Рис.3
В случае а) энергия связи составляет 18-4εd , а в случае б) достигает – 4,25εd, т.е. вторая конфигурация оказывается устойчивее.
На рис.4 показаны еще два вида агрегатов, когда частицы объединяются в кластеры типа «клубок» или образуют цепочки.а) кластер «клубок» б) цепочка частиц
Рис.4
Обозначая энергию связи в этих случаях соответственно ε1 и ε2, Джордан получил следующее равенство:
Число степеней свободы в цепочечном кластере выше. Между состояниями а) и б) существует энергетический барьер. Важно, что обе структуры возникают в отсутствие внешнего магнитного поля, однако при его приложении образование цепочечных кластеров более вероятно.
Когда агрегирование затрагивает большое число частиц, Джордан, используя матричный метод вычисления, показал, что и в случае малой концентрации магнитных частиц при приложении внешнего магнитного поля происходит агрегирование частиц с образованием цепочек или линейных кластеров, поскольку именно такой процесс требует наименьших энергетических затрат.
Впервые В.В. Чеканов в работе [34] предложил рассматривать возникновение агрегатов в магнитных коллоидах как фазовый переход дипольный газ – жидкость. Эта идея оказалась плодотворной и представления об образовании микрокапельных агрегатов получили развитие в целом ряде работ [17], [33].
Так, в работе Сано и Дюи [49] рассматривают коллоидные частицы в МЖ как молекулы газа, причем влиянием на них молекул основы пренебрегается. Состояние, когда частицы существуют в основе по отдельности, рассматривается как газ; если же частицы объединились в агрегаты, то такое состояние приравнивается к жидкой фазе.
В результате действия магнитного поля взаимодействие между частицами магнитного материала возрастает так сильно, что флуктуации концентрации приводят к спонтанному разделению коллоида на фазы с разными концентрациями частиц [33].Теория фазовых переходов в магнитных коллоидах получила развитие в работах А.Ю. Зубарева с сотрудниками [17]. В работе [33] показано, что зародышами для образования агрегатов являются наиболее крупные частицы. В работе [17] предложена модель равновесного фазового перехода “газ – жидкость ” в ансамбле парамагнитных частиц с учетом образования линейных цепочечных кластеров. Недавно [14] высказана гипотеза, что в коллоидных системах могут возникать рыхлые квазиферрические агрегаты, известные как “фрактальные кластеры”. Их главная особенность заключается в том, что концентрация агрегированных частиц
меняется по степенному закону в зависимости от расстояния r до формального центра кластера: ,где df - называется фрактальной размерностью. В МЖ такие объекты могут образовываться за счет действия молекулярных сил, аналогично классическому механизму коагуляции коллоидов.
По отношению к реальным МЖ на практике используются все вышеперечисленные модели в зависимости от задач, стоящих перед исследователями. Это связано с тем, что применение магнитных жидкостей имеет очень широкий спектр, который часто требует иногда взаимоисключающих свойств МЖ: в одних случаях требуется отсутствие в МЖ агрегатов частиц, а в других – наличие таких агрегатов является обязательным условием функционирования МЖ в конкретных условиях, например, в дефектоскопии или визуализации магнитной записи [19]. Поэтому вполне закономерен интерес исследователей к оптическим методам изучения коллоидных систем как наиболее чувствительным и информативным методам диагностики МЖ и вообще исследованию МЖ как объекта.
ГЛАВА 2. ФИЗИЧЕСКИЕ ОСНОВЫ МЕТОДА СВЕТОРАССЕЯНИЯ.
Однородная среда не способна рассеивать свет, так как вторичные световые волны, испускаемые всеми их элементарными объемами, полностью гасят друг друга при интерференции.
Все среды, за исключением вакуума являются в определенном смысле недородными. Рассеяние света в чистой жидкости, которую мы считаем однородной средой, обусловлено флуктуациями плотности в объемах, малых по сравнению с кубом длины световой волны.
Прозрачная среда, на которую падает свет, представляет из себя скопление большого числа молекул. Электромагнитное поле вблизи данной молекулы наводит в ней переменный дипольный момент, который в свою очередь приводит к появлению вторичного дипольного излучения. Жидкости являются оптически плотными, т.е. расстояние между их молекулами порядка 2-3
(для газов при нормальных условиях порядка 30 ), что намного порядков меньше длины падающего света (4000 7000 ). Вследствие этого, каждая молекула находится под воздействием не только поля падающей волны, но и суммы вторичных полей всех остальных молекул. Само же вторичное поле молекулы зависит от того поля, в котором она находится, т.е. мы имеем дело с электромагнитной задачей многих тел: молекулы оказываются связанными. Решение задачи при допустимых приближениях состоит в том, что внутри среды вторичные волны налагаются друг на друга и на падающую волну и дают преломленную волну, распространяющуюся со скоростью , где с – скорость света в вакууме, а n– показатель преломления. Падающая волна полностью гасится внутри среды; этот факт называют теоремой гашения Эвальда-Озеена. За пределами среды вторичные волны, налагаемые друг на друга, дают зеркально отображенную волну. Показатель преломления n зависит от числа молекул в единичном объеме и поляризуемости отдельной молекулы, т.е. в сущности преломление – это одно из явлений рассеяния, а показатель преломления – по существу результат рассеяния множеством молекул, из которых состоит среда.Обычно при анализе взаимодействия пучка света с оптически гладкой границей раздела предполагается, что преломляющая среда является идеально однородной, в то время как на самом деле она однородна лишь в статистическом смысле. Среднее число молекул в данном элементе объема постоянно, однако в любой момент времени число молекул в этом элементе будет иным, нежели в другой момент времени. Именно такие флуктуации плотности приводят к рассеянию в оптически плотных средах. Нужно помнить, что хотя мы и говорим о флуктуациях плотности, но рассеивающими элементами являются именно молекулы, поэтому точнее говорить о флуктуационной теории рассеяния на молекулах, чем о рассеянии на флуктуациях.
В растворах говорят о рассеянии света на флуктуациях концентрации растворенного вещества в объемах того же порядка величины. С последним рассеянием связана интенсивность избыточного рассеяния I, представляющая разность между интенсивностями рассеяния раствора и чистого растворителя.
Важно различать рассеяние на флуктуациях и рассеяние на частицах. Хотя математические выражения часто аналогичны, физическое содержание их несколько различно: рассеяние на флуктуациях, например, описывается на основе термодинамических законов, в то время как рассеяние на частицах нет. Или, например, рассеяние на флуктуациях плотности в идеальных газах имеет такой же функциональный вид, как и рассеяние на разбавленных взвесях частиц, малых по сравнению с длиной волны. Мы будем называть последний тип рассеяния рэлеевским рассеянием, между тем в теории рассеяния на флуктуациях этот термин может иметь несколько иное значение.
Рассматриваемая нами проблема – это задачи о взаимодействии света определенной длины волны с отдельной частицей (т.е. с некоторой вполне определенной совокупностью очень большого числа молекул), которая погружена в остальном среду. Под однородной будем понимать среду, когда масштаб молекулярной неоднородности мал по сравнению с длиной волны падающего света. Мы будем пренебрегать рассеянием на флуктуациях молекул растворителя, которое обычно гораздо слабее, чем рассеяние на частицах. Несмотря на то, что частица может иметь сложную форму и состоять из нескольких компонент, предположим, что вещество частицы в каждой точке можно описывать микроскопическим образом. Это означает, что оптические частицы полностью определяются частотной зависимостью оптических характеристик, так что квантовый подход к описанию элементарных возбуждений не требуется.