В первой части нашего рассмотрения мы ограничимся случаем упругого рассеяния: частота рассеянного света такая же, как и у падающего света. Упругое рассеяние иногда называют когерентным рассеянием, однако термин «упругое» физически более нагляден, а понятие когерентности как определенной связи между фазами различных источников излучения строго устанавливается в оптике.
Понять физический механизм рассеяния отдельной частицей можно, не конкретизируя вида частицы и не прибегая к каким-либо вычислениям. Рассмотрим произвольную частицу, которую разобьем мысленно на малые области (рис. 1).
АМаленькие диполи
Рис. 1. Рассеяние поля в точке А – результат сложения всех элементарных волн от областей, на которые разбита частица.
Приложенное колеблющееся поле (поле электромагнитной волны) наводит в каждой области дипольный момент. Эти диполи колеблются с частотой приложенного поля и создают вторичное излучение во всех направлениях.
Рассеяние диполями поля являются когерентными т поэтому рассеянное поле в точке А получается сложением рассеянных волн с учетом фазовых соотношений между ними. Эти фазовые соотношения зависят от направления рассеяния, поэтому рассеянное поле будет меняться с направлением рассеяния. Если частица мала по сравнению с длиной волны, то все вторичные волны находятся примерно в фазе, поэтому для такой частицы рассеяние мало меняется с направлением. С увеличением размера частицы возрастают возможности для взаимного усиления или подавления рассеянных волн, откуда следует, что чем больше частицы, тем больше пиков и провалов в индикатрисе рассеяния. Форма частицы имеет важное значение: если частицу, указанную на рис. 1 деформировать, то все фазовые соотношения изменяются, а, следовательно, изменяется и индикатриса рассеяния.
Фазовые соотношения между рассеянными волнами зависят от геометрических факторов: направления рассеяния, амплитуды и формы.
Амплитуда же и фаза наведенного дипольного момента для данной частоты зависят от свойств вещества, из которого состоит частица, поэтому для полного описания рассеяния и поглощения малыми частицами необходимо знать отклик объемного вещества на осциллирующие электронные поля.
Для некоторого класса частиц рассеянное поле можно найти приближенно путем разбиения частиц на невзаимодействующие между собой дипольные рассеиватели и сложения рассеянных волн. Такое приближения называется приближением Рэлея-Ганса.
В реальных условиях приходится иметь дело не с изолированной частицей, а с большим их числом в растворах. Строгий теоретический расчет рассеяния многими частицами является сложной задачей. Однако эти трудности можно обойти, воспользовавшись еще одним приближением.
Частицы в скоплении находятся в электромагнитном взаимодействии: каждая из них возбуждается внешним полем и суммарным полем рассеяния всех других частиц; при этом поле, рассеянное частицей, зависит от полного поля, в которое она помещена. Значительные упрощения возникают в предположении однократного рассеяния: число частиц достаточно мало, а расстояние между ними достаточно велико, так что в окрестности каждой частицы полное поле, рассеянное всеми частицами, мало по сравнению с внешним полем. При этом предположим, полное рассеянное поле представляет сумму полей, рассеянных отдельными частицами, каждая из которых находится под воздействием внешнего поля в изоляции от других частиц. В реальных лабораторных условиях можно приготовить разбавленные взвеси с частицами достаточно малого размера, чтобы обеспечить режим однократного рассеяния.
Помимо предположения об однократном рассеянии будем считать, что частиц много, и расстояние между ними случайны, что отвечает некогерентному рассеянию. Это означает, что фаза волн, рассеянных отдельными частицами, не связаны между собой каким-либо определенным соотношением, поэтому полная интенсивность рассеяния всех частиц равна сумме интенсивностей рассеяния отдельными частицами.
Уравнения Максвелла и распространение плоских волн с учетом поглощения и пространственной дисперсии.
Различные вопросы электромагнитной теории изложены в огромном количестве книг по электромагнетизму, оптике и поляризации света. Удобно собрать используемый математический аппарат в одном месте, с едиными обозначениями, чтобы избежать неизбежной путаницы в обозначениях различных авторов.
Уравнения Максвелла для макроскопического электромагнитного поля внутри вещества в системе единиц СИ могут быть записаны в виде:
(1) (2) (3) (4)где
- напряженность электрического поля, - магнитная индукция.Электрическая индукция
и напряженность магнитного поля определяются равенствами: (5) (6)где
- электрическая поляризация (средний электрический дипольный момент единицы объема), - намагниченность (средний магнитный дипольный момент единицы объема), - диэлектрическая постоянная (вакуума), - магнитная постоянная (вакуума).Уравнения (1) – (6) должны быть дополнены материальными уравнениями:
(7) (8) (9)