где
- проводимость, - магнитная восприимчивость, - электрическая восприимчивость.Коэффициенты макроскопической теории
и зависят от свойств рассматриваемой среды, при этом будем считать, что они не зависят от полей (среда линейна), координат (среда однородна) и направления (среда изотропна).Используя классическую теорию термодинамики, для описания рассеяния света можно ввести параметры Стокса.
Вывод параметров Стокса и их свойства.
Поскольку полный вывод параметров Стокса в современной литературе нелегко найти в одном месте, полезно охарактеризовать основной путь, ведущий к установлению связей между этими параметрами и основным состоянием поляризации рассеянного излучения [ ]. Рассмотрим элементарный процесс рассеяния отдельной частицей, помещенной в точку О на рис.2, а.
a) б)
Рис.2 Графическое изображение элементарного процесса рассеяния и определение используемой системы координат. а – правосторонняя ортогональная система координат для падающего и рассеянного излучений, определение угла рассеяния
и элемента телесного угла; б – эллипс поляризации, правосторонняя система координат, оси и другие параметры.Предположим, что в результате этого процесса получается полностью поляризованное монохроматическое излучение с произвольной ориентацией эллипса поляризации, распространяющееся в направлении 3 (перпендикулярно плоскости чертежа рис.2, б). Это направление вместе с направлением падающего излучения I0и точкой О определяет плоскость рассеяния. Два других направления 1 и 2 совместно с направлением 3 образуют правую ортогональную систему координат с центром в точке О/. Направления 1 и 2 всегда выбираются соответственно перпендикулярно и параллельно плоскости рассеяния.
Чтобы найти соотношение между вектор-параметрами Стокса I0 и I, которые связаны матрицей рассеяния (10) и комплексными амплитудами S1 и S2, определяемые из теории, необходимо, прежде всего, сделать два вполне справедливых допущения.
. (10)Во-первых, примем, что экспериментально можно определить (например, с помощью анализаторов и пластинок в ¼ длины волны) осреднение по времени амплитуды и разности фаз колебаний электрического вектора вдоль направлений 1 и 2 [ ].
Во-вторых, предположим, что значения комплексных амплитуд рассеяния вдоль этих направлений можно теоретически выразить через амплитуды падающего излучения (это делается при помощи теории Ми). Рассмотрим теперь поле излучения вдоль фиксированной плоскости, проходящей через точку О/, которая удалена от точки О на расстояние, достаточное для выполнения указанных выше условий освещения (рис 2, б). Принимая во внимание, как обычно, наличие гармонических колебаний вектора
, происходящих с угловой частотой , можно записать , (11)где
относятся к компонентам вектора
вдоль направлений 1 и 2 соответственно; и - максимальные значения амплитуд и . Фазовые углы и отсчитываются таким образом, что разность фаз является постоянной величиной. Согласно принятым ранее допущениям, значения и также должны быть постоянными. Правая часть выражения (11) дает параметрическое представление эллипса поляризации, который является результатом двух связанных гармонических колебаний, распространяющихся вдоль направлений 1 и 2. Действительно, исключая угол при помощи очевидных тригонометрических преобразований , после алгебраических упрощений получаем из (11) (12)Это общая форма уравнения эллипса, описываемого концом вектора электрического поля. Большая и малая оси этого эллипса вдоль направлений
и необязательно совпадают с осями координат 1 и 2, а образуют с ними угол . Чтобы определить угол , произведем стандартный поворот координатных осей 1 и 2 при помощи матрицы преобразования ,которая дает компоненты поля вдоль направлений
и . Используя (11), получаемРаскрывая тригонометрическое выражение
, предыдущие формулы перепишем в виде , , (13)где
, . (14)Исключая угол
из системы (13), после упрощений находим (15)Используя соотношение (14) и производя стандартные преобразования, полагаем
Следует подчеркнуть, что уравнение (15) не имеет смысла, если
. Последнее равенство выполняется, когда , т.е. , где - любое целое число, включая нуль. В случае эллипс поляризации вырождается в прямую. Заметим, что при помощи указанного выше поворота осей уравнение эллипса (15) можно привести к нормальной форме ,при которой центр эллипса находится в начале координат, а большая
и малая полуоси располагаются соответственно вдоль направлений и . Сравнивая нормальную форму с общим видом уравнения (15), отмечаем, что третий член в левой части (15) пропадает, т.е.Используя выражение (14), после группировки членов и упрощений получаем
,или