Будем считать, что соотношение (16) справедливо даже и тогда, когда
, т.е. . В этом случае и имеется неопределенность относительно квадранта плоскости (1,2), в котором лежит главная ось эллипса. Эта неопределенность устраняется, если известна разность фаз .Выведем теперь из (15) другие соотношения, используя определения большой и малой полуосей эллипса поляризации. При условии, что уравнение (16) остается справедливым, имеем
т.е.
Из соотношений (14) следует, что числитель в правой части последнего уравнения обращается в
. Используя указанное выше выражение для , получаем (17)Теперь можно показать аналитически, что для рассматриваемого эллипса поляризации длина диагонали D любого описанного около него прямоугольника, т.е. расстояние 2О/Rна рис 2, б, является инвариантной
для всех углов
. Отсюда следует, что для всех имеем (18)Поэтому, сравнивая (18) с (17), получаем
(19)Прежде чем получить выражения для параметров Стокса, необходимо вывести еще несколько дополнительных соотношений. Определим угол
следующим образом: , .Используя обычные свойства алгебраических отношений и некоторые тригонометрические тождества, получим
, (20)Аналогичным образом введем другой вспомогательный угол
: , (21)После подстановки (21) в (16), имеем
(22)Наконец, разделив (19) на (18), получаем
(23)Из (20), (21) и (23) находим
(24)Получим теперь соотношения между четырьмя параметрами Стокса I, Q, U и V для полностью поляризованного потока излучения и такими параметрами поляризации как углы
и . Для этого определим параметры Стокса следующим образом: (25)Соответствующий переходный множитель между потоками энергии и квадратами амплитуд электрического поля ради простоты в тождествах (25) опущен. Возводя в квадрат все четыре параметра (25) и затем складывая их, замечаем, что
(26)Это равенство справедливо только в том случае, когда рассматриваемый поток излучения полностью поляризован.
Далее, из (16), (20) и (23) имеем
, .При подстановке этих выражений в (26) получаем
или
Таким образом, можно записать выражения для четырех параметров Стокса в двух удобных формах, полностью описывающих состояние поляризации электромагнитного излучения. Именно,
Остается теперь рассмотреть вопрос о направлении вращения конца электрического вектора, описывающего эллипс поляризации. Из выражений (11) для компонент
и следует, что если , то конец вектора результирующего электрического поля описывает эллипс в направлении движения часовой стрелки в фиксированной плоскости, проходящей через точку О/. На эллипсе, изображенной на рис. 2,б, это направлении указано стрелками. Для данного случая термин правосторонняя поляризация обосновывается тем, что в фиксированный каждый момент времени концы электрических векторов непрерывного цуга волн описывают вполне определенную спираль, или винтовую линию, в направлении движения часовой стрелки. Поляризация будет левосторонней (направление движения против часовой стрелки в плоскости рис. 2,б), .Из выражений (24) и (27г) следует, что знак параметра Стокса М определяет направление вращения эллипса поляризации, поскольку по определению
. Поляризация будет всегда правосторонней в указанном выше смысле, когда , или , а . Однако поскольку угол определяется так, что величина всегда равна отношению малой оси эллипса к его большой оси, то окончательные условия, определяющие направление поляризации будут следующими: , - правосторонняя поляризация, - левосторонняя поляризация.Следует сказать еще о двух свойствах параметров Стокса. Фактически степень применимости параметров Стокса целиком зависит от возможности измерять при помощи существующих оптических приборов сумму и разность интенсивностей в двух любых фиксированных и взаимно перпендикулярных направлениях 1 и 2. Кроме того, необходимо измерить еще разность фаз между этими интенсивностями за интервал времени, который обычно намного превышает период колебаний электрического поля. Ясно, что это обстоятельство вносит в рассмотрение некоторую долю произвола, зависящую, например, от ограничений, накладываемых величиной постоянных времени приемных измерительных устройств. Аналогичным образом параметры рассеяния естественного, или неполяризованного, света можно определить в зависимости от того, возможно ли измерить конечные разности интенсивностей Q и фаз
для любой фиксированной ориентации осей 1 и 2. В этом случае для параметров Стокса выполняется следующее соотношение: (28)Приведенный выше вывод параметров Стокса справедлив для строго монохроматического излучения фиксированной угловой частоты
, связанные гармонические колебания (12). Однако, в этом случае всегда имеется некоторая доля чисто поляризованного излучения, соответствующая одному из видов поляризации. Поэтому в действительности соотношение (28) никогда не выполняется. Единственное условие, при котором может наблюдаться неполяризованное, но в то же время строго монохроматическое излучение, выполняется при сложении двух независимых и противоположно поляризованных потоков. Однако трудно придумать какую-либо методику для полного достижения этого условия в эксперименте.