Смекни!
smekni.com

Исследование свойств магнитных жидкостей методом светорассеяния (стр. 9 из 14)

Одна из важных проблем при конструировании фотоэлектрического прибора для светорассеяния – обеспечение стабильности источника света. Так как интенсивность рассеяния в чистых жидкостях и разбавленных растворах полимеров имеет порядок

от интенсивности первичного светового пучка, этот источник света одновременно должен быть достаточно мощным. Необходимость вести измерения в монохроматическом свете обусловила переход от ламп накаливания к ртутным лампам высокого давления, все излучение которых в видимой части спектра сосредоточено практически в трех линиях – синей, зеленой и желтой. Далее, поскольку желательно работу проводить с узким параллельным пучком, необходимо концентрирование светового потока лампы на диафрагму с отверстием малого диаметра ~1 мм, находящуюся в фокусе объектива, формирующего пучок. В связи с перечисленными требованиями в современных конструкциях приборов для светорассеяния в качестве первичного светового пучка используют излучение лазера.

Использование лазера в качестве источника первичного светового пучка в фотометрах для светорассеяния имеет ряд существенных преимуществ:

а) исключительная монохроматичность излучения (

), при которой отпадает необходимость использования световых фильтров;

б) высокая стабильность интенсивности излучения;

в) высокая плотность излучения в световом пучке, исключающая необходимость в фокусирующих линзах;

г) весьма малая расходимость светового пучка (~0,50), исключающая потребность в коллимации, что сужает допуск для величин угла рассеяния.

Компенсационная схема впервые была осуществлена в фотоэлектрическом приборе Зимма [36] и положена затем в основу многих других конструкций. Более или менее типичная оптическая схема фотоэлектрического прибора, предназначенного для измерений светорассеяния растворов полимеров, изображена на рис. 4.1.

L

МL L P C


S

Рис. 4.1. Схема устройства оптической части фотоэлектрического прибора для светорассеяния.

Здесь ML – ртутная лампа высокого давления, L – фокусирующие линзы, S – щелевые диафрагмы, Р – поляроид, С – кювета с исследуемым образцом, РМ – фотоэлектронный умножитель. Очерченный на схеме блок фотоумножителя можно устанавливать под определенными углами к первичному световому пучку.

В последнее время разрабатываются различные конструкции приборов, позволяющих проводить измерения светорассеяния вплоть до углов 10-6, до 5 и даже до 1,50 [36].

3.2. Поправочные факторы при изучении рассеяния.

Поправка на угол преломления. Вопрос о поправочных факторах, которые необходимо вводить при абсолютных измерениях интенсивности рассеяния жидкостей детально рассматривали многие авторы, цитируемых источников литературы. Так как здесь нас интересуют лишь относительные измерения интенсивности светорассеяния, то остановимся сперва на поправке, учитывающей телесный угол (или показатель преломления раствора) при рассеянии, имеющей важное значение при таких измерениях. Другие поправочные факторы, определяемые геометрическими параметрами прибора, практически не меняются при переходе от одной жидкости (раствора) к другой и не существенны поэтому при относительных измерениях. Укажем только, что выгоднее создать минимальное расстояние l от оси светового пучка до передней поверхности кюветы (поправка на величину рассеивающего объема).

Для правильного измерения приведенной интенсивности

необходимо знать величину I потока рассеянного света, достигающего поверхности приемника (ФЭУ). Если
- телесный угол для конуса лучей, идущих из малого рассеивающего объема в центре кюветы через диафрагму приемника, то вследствие преломления на поверхности кюветы он принимает значение
, где
- относительный показатель преломления жидкость-воздух.

Кажущееся уменьшение расстояния r от приемника до оси пучка будет

и
. Так как
, то

. (4.1)

Обычно в приборах выполнено условие

, следовательно,

. (4.2)

В работе [36] показано, что поправка

на показатель преломления для кюветы с плоской передней стенкой остается такой же и для цилиндрической кюветы.

Приборы для изучения угловой зависимости рассеяния должны быть юстированы таким образом, чтобы при всех угловых положениях приемника рассеянного света (ФЭУ) конус лучей не пересекал верхнюю и нижнюю границы светового пучка, идущего через кювету.

Поправка на величину рассеивающего объема. При различных угловых положениях приемника света он «просматривает» разный по величине рассеивающий объем. В случае достаточно узкого и строго параллельного первичного светового пучка величина рассеивающего объема должна меняться с углом

как
. Практика показывает, однако, что имеют место небольшие отклонения от этого закона, связанные с некоторой непараллельностью пучка, несовершенством оптико-механической части приборов и другими инструментальными факторами. Желательно поэтому пользоваться «поправкой на объем», экспериментально определяемой для каждой отдельной кюветы. Поправку легко найти, снимая по точкам индикатрису рассеяния для чистой жидкости (растворителя). Если в этом случае
есть отсчет по прибору под углом
, а
- под углом 900, то «поправка на объем», на которую множится отсчет интенсивности рассеяния раствора под углом
для приведения его к объему, соответствующему угловому положению приемника рассеяния под 900 к основному пучку, будет
.

Поправка на отражение света. В тех случаях, когда различны показатели преломления раствора

и стекла
, из которого изготовлена кювета, в последней происходит отражение первичного и рассеянного света, могущее в принципе исказить результаты измерений. Подобное искажение усиливается, если измерительная кювета находится не в жидкой среде, а в воздухе. При этом следует принимать во внимание отражение первичного светового пучка и отражение рассеянного света от границы стекло – воздух.

Рис. 4.2. иллюстрирует указанную ситуацию для случая параллельного светового пучка при измерениях асимметрии рассеяния

в восьмигранной кювете.