- амплитуда гармоник
имеет нулевое значение в точках , где- в области частот спектра
располагаются гармоник;- постоянная составляющая сигнала равна
.Учитывая, что большая часть энергии сигнала сосредоточена в области частот
, ширина спектра бинарного периодического сигнала приблизительно оценивается по формуле: ,В реальных цепях форма прямоугольного импульса искажается. Поэтому размывается граница между формами аналогового и дискретного сигнала.
Вид информации, содержащейся в сигнале, изменяет его признаки: форму, ширину спектра, частотный и динамический диапазон. Например, стандартный речевой сигнал, передаваемый по телефонной линии, имеет ширину спектра 300 – 3400 Гц, звуковой 16 – 20000 Гц, телевизионный 6 – 8 МГц и т.д.
Произведение
называется базой сигнала. Если , то сигнал узкополосный, при - широкополосный.В соответствие с формулой Фурье изменение формы сигнала при модуляции приводит к изменению спектра модулированного сигнала. Чем выше максимальная частота спектра модулирующего сигнала
, тем шире спектр модулированного сигнала.Количественное значение увеличения ширины спектра этого сигнала зависит от вида модуляции и ширины спектра модулирующего сигнала.
Ширина спектра модулированного синусоидального сигнала составляет:
-для АМ: ∆FАМ = 2Fс.м. ;
-для ЧМ: ∆F ЧМ >> Fс.м. ;
-для ФМ: ∆FФМ ≈ ∆FЧМ ;
Для радиовещания ширина спектра для ЧМ сигнала составляет 100÷150 кГц, а для АМ»7 кГц.
Любое сообщение в общем случае можно описать с помощью трех основных параметров:
-динамическим диапазоном – Дс;
-шириной спектра частот - ∆Fс;
-длительностью передачи – tc;
Произведение Дс * ∆Fс * tc= Vcназывается объемом сигнала. (рис 5)
Рис. 5. Графическое представление объема сигнала
Для обеспечения неискаженной передачи сообщения объемом Vc, необходимо чтобы характеристики среды распространения и непосредственно приемника соответствовали ширине спектра и динамическому диапазону.
Для безискаженной передачи сообщения в реальном масштабе времени полоса пропускания приемника должна соответствовать ширине спектра сигнала.
Проблема передачи информации, содержащейся во многих низкочастотных сигналах, с помощью множества узкополосных каналов связи с разными частотами решается при использовании модулированных сигналов.
Модулированный сигнал – это узкополосный сигнал, параметры которого изменяются пропорционально низкочастотному информационному сигналу. Модулированный сигнал, как правило, является высокочастотным колебанием.
Для получения модулированного сигнала используется гармоническое (несущее) колебание (несущая частота).
Информация вносится в несущее колебание с использованием модуляции – изменение какого-либо из параметров высокочастотного колебания пропорционально низкочастотному сигналу
.Амплитудная модуляция (АМ).
При АМ амплитуда сигнала меняется пропорционально низкочастотному информационному сигналу:
, где - начальное значение амплитуды несущей; kAM - коэффициент амплитудного модулятора.Поэтому сигнал с АМ:
.Пусть сообщение
, тогда ,где
- коэффициент амплитудной модуляции, основной параметр АМ – колебаний с гармонической модуляцией.Используя тригонометрическую формулу для произведения косинусов, получим:
Все три слагаемых – гармонические колебания: первое – несущее колебание, второе и третье слагаемые называют соответственно верхней и нижней боковыми составляющими. Таким образом, эта формула дает полное спектральное разложение АМ колебания (амплитудный и фазовый спектры). Ширина амплитудного спектра этого АМ - колебания равна (2W) удвоенной частоте модулирующего сигнала.Если модуляция осуществляется сплошным периодическим сигналом, в спектре которого содержатся много гармоник, то каждая из них даст две боковые составляющие в спектре модулированного сигнала. В спектре появляется верхняя и нижняя боковые полосы. Ширина спектра будет определяться модулирующей гармоникой с максимально высокой частотой. Обе боковые полосы несут полную информацию о н\ч модулирующем сигнале. Поэтому в технике связи часто используются сигналы с одной боковой полосой (ОБП- сигналы).
Амплитудно-импульсная модуляция (АИМ)
При АИМ амплитуда периодической последовательности прямоугольных импульсов изменяется пропорционально низкочастотному информационному сигналу. В теории информации АИМ – сигнал называют сигналом типа АИМ-1.
Пусть несущее колебание представляет собой периодическую последовательность прямоугольных импульсов u(t) с амплитудой Uн , которая описывается тригонометрическим рядом Фурье. Заменив в формуле для АМ величину (Uнcosw0t) на u(t), получим:
, где - коэффициент или глубина модуляции импульсов.Т.к.
то тогда после преобразования получим выражение для АМ-сигнала:Анализируя эту формулу, можно сделать вывод, что АИМ – сигнал содержит постоянную составляющую А0, гармонику А0М частоты модуляции W и высшие гармонические составляющие Аn частоты следования импульсов nw1, около каждой из которых симметрично по обе стороны расположены боковые составляющие с частотами (nw1+W) и (nw1- W).
Фазовая модуляция (ФМ) – это изменение начальной фазы в\ч сигнала пропорционально н\ч сигналу:
, где kФМ – коэффициент фазового модулятора,φ0 – начальная фаза в\ч колебания.
Амплитуда сигнала при ФМ не изменяется, а при гармонической ФМ возникает гармоническая ЧМ. Тогда полная фаза (аргумент косинуса) при ФМ будет равна
, т.е. изменение полной фазы не равно частоте несущей ω0.Мгновенной частотой сигнала называют производную
.У идеального гармонического сигнала мгновенная частота постоянна:
. При ФМ , т.е. при ФМ изменяется мгновенная частота сигнала.Модулированный сигнал с ФМ:
, если , то , где β = SmkФМ – индекс фазовой модуляции. Это основной показатель сигнала с гармонической ФМ.Частотная модуляция (ЧМ) – это изменение мгновенной частоты в\ч сигнала пропорционально н\ч сигналу:
,где kЧМ - коэффициент частотного модулятора,
ω0 – частота в\ч колебания.
Амплитуда сигнала при ЧМ не изменяется. Увеличение уровня модулирующего сигнала вызывает увеличение мгновенной частоты сигнала, что соответствует увеличению числа макс. и мин. колебания на фиксируемом отрезке времени. При уменьшении мгновенной частоты сигнала увеличивается период квазигармонического сигнала.
При ЧМ полная фаза сигнала определяется по формуле:
,т.е. при ЧМ изменяется начальная фаза сигнала, а при ФМ имеется изменение мгновенной частоты.
Поэтому ФМ и ЧМ – два тесно связанных друг с другом вида модуляции – относят к угловой модуляции (УМ). Т.к. при модуляции в\ч сигнал близок к идеальному гармоническому сигналу, то модулированный сигнал называют также квазигармоническим сигналом.