ИССЛЕДОВАНИЕ УСТОЙЧИВОСТИ РАЗОМКНУТОЙ СИСТЕМЫ ЭЛЕКТРОПРИВОДА ТПН-АД
1. Природа возникновения колебаний, виды и особенности колебательных процессов
Одним из актуальных вопросов исследования динамических режимов работы электропривода «Тиристорный преобразователь напряжения – асинхронный двигатель» является исследование устойчивости ЭП. Как показали эксперименты, в разомкнутых системах ЭП ТПН-АД с синхронизацией с напряжением сети на рабочем участке механических характеристик, в ряде случаев, могут наблюдаться устойчивые автоколебания выходных величин [4,40,42]. Колебания нарушают нормальную работу разомкнутых систем ЭП, усложняют расчет и настройку замкнутых систем, ухудшают качество регулирования координат и энергетику ЭП.
Характер и количественные показатели колебательных процессов весьма различны. Они зависят от множества параметров и факторов, в число которых можно включить
величину угла включения вентилей;
параметры АД;
моменты нагрузки на валу АД;
суммарный приведенный момент инерции электропривода;
начальные электромагнитные условия (НЭМУ);
начальную скорость АД;
схемотехническую конструкцию ТПН и способ синхронизации вентилей.
Это определяет задачу по разработке методов исследования устойчивости разомкнутой системы электропривода ТПН-АД, а также оценки влияния различных факторов и параметров ЭП на вид и характер колебательных процессов.
Появление автоколебаний в разомкнутых системах ЭП ТПН-АД, возможно объяснить наличием положительной обратной связи между углом сдвига тока нагрузки и амплитудой первой гармоники выходного напряжения преобразователя, а так же нелинейностью параметров электропривода. Колебательный процесс можно условно разделить на две категории - режимы «малых» и «больших» колебаний [4].
«Малые» колебания - это незатухающие гармонические колебания выходных параметров АД при условии, что скорость ротора изменяется в пределах первого квадранта (не превышает синхронную, т.е. 0 < w <w0). Физически, этот вид автоколебаний связан с обменом энергии между электромагнитными контурами и инерционными маховыми массами электропривода. Характерные графики изменения скорости, момента и тока статора АД в режиме «малых» колебаний представлены на рис. 3.1. Графики построены при помощи модели электропривода ТПН-АД.
Особенности процессов в режиме больших колебаний позволяют говорить о том, что их возникновение связано, не столько с изменением скорости ротора и обменом энергии, сколько с колебательным движением и взаимодействием между собой обобщенных векторов напряжения сети и ЭДС обмоток статора, а так же потокосцеплений статора и ротора.
Вторая категория – это режим больших колебаний (рис 3.2). В данном случае скорость двигателя может превысить синхронную, а область колебаний охватывает первый и второй квадранты.
2. Методика исследования устойчивости разомкнутой системы электропривода ТПН-АД
Динамические свойства асинхронных двигателей. Реальные переходные процессы асинхронного электропривода сопровождаются изменением скорости двигателя. Однако, в ряде случаев, полезно использовать результаты решения системы дифференциальных уравнений асинхронной машины при постоянной скорости ее вращения. Расчетная структурная схема разомкнутой системы электропривода ТПН-АД изображена на рис.3.3 [10, 40].
Рис. 3.3. Расчетная структурная схема разомкнутой системы ЭП ТПН-АД
Характерной особенностью приведенной схемы является применение зависимости фазы тока не от скольжения, а от текущего значения скорости. При таком представлении выходные сигналы всех звеньев имеют прямую зависимость от входных сигналов, а внутренний контур системы представляет положительную обратную связь. При математическом описании элементов структурной схемы выполняется учет их нелинейных свойств.
Асинхронный двигатель изображается тремя звеньями с передаточными функциями, которые обозначаются
– передаточная функция электромагнитной части АД; – передаточная функция электромеханической части ЭП; – передаточная функция звена внутренней обратной связи, по углу нагрузки;где Кj -
- переменная величина, зависящая от значения скорости;JS – суммарный приведенный момент инерции ЭП.
Тиристорный преобразователь представлен усилительным звеном с коэффициентом усиления Ктп, который при переходе к приращениям определяется [9]
, (3.1)в точке, определяемой углом управления a и скольжением s.
Существенная нелинейность, вводимая вентилями учитывается за счет аппроксимации выходного напряжения ТПН. Уравнения амплитуды напряжения первой гармоники U1, полученные в процессе идентификации имеют вид [3]
(3.2)с учетом рекомендуемых ограничений
Фаза тока определяется по эквивалентным значениям активных и реактивных составляющих сопротивлений схемы замещения АД
(3.4)где xэ, rэ - эквивалентные сопротивления асинхронного двигателя для Т-образной схемы замещения, которые определяются по выражениям
(3.5)Звено, характеризующее электромагнитную часть асинхронного двигателя, описывается на основании аналитического выражения, определяющего переходную составляющую электромагнитного момента АД, как реакцию на скачок входного напряжения [87]
(3.6)Это выражение содержит девять составляющих, из которых первая – это установившееся значение момента, две - экспоненциальные, три - косинусные и три - синусные составляющие
(3.7) (3.8) (3.9) (3.10) (3.11) (3.12) (3.13) (3.14) (3.15)Амплитуды Аi, частоты свободных колебаний Wi и постоянные времени затухания Ti экспоненциальных и периодических составляющих зависят от параметров двигателя, значений скольжений ротора и характеризуются двумя коэффициентами затухания (a1, a2) и двумя базовыми частотами колебаний (w1, w2) [87]
Коэффициенты а и b находятся по выражениям
(3.17)Коэффициенты А и В определяются
(3.18) (3.19)где r1, r2 - активные сопротивления статора и ротора АД, соответственно;
xs, xr, x0 – реактивные сопротивления, соответственно, статора, ротора и цепи намагничивания АД, определяемые по схеме замещения.
Нелинейные свойства АД учитываются за счет изменения величин сопротивлений xэ и rэ и, как следствие угла нагрузки jэ.
Рассмотрим свойства двигателей при скольжениях в диапазоне 0 £ s £ sк, т.е. на рабочем участке механической характеристики.
На рис. 3.4 изображены графики составляющих электромагнитного момента при включении с нулевыми НЭМУ и номинальным скольжением АД для нескольких четырехполюсных асинхронных двигателей серии 4А различных типоразмеров. Расчет значений графиков выполнялся при учете всех составляющих (3.7) -(3.15), при нулевых начальных электромагнитных условиях и постоянном скольжении, равном номинальному. В табл. 3.1 приведены параметры, характеризующие каждую из составляющих АД. Для экспоненциальных составляющих – это амплитуды и электромагнитные постоянные времени затухания, для косинусных и синусных составляющих – это максимальные амплитуды, электромагнитные постоянные времени затухания и частоты свободных колебаний. Параметры АД приняты в соответствии с данными, приведенными в [21].
Приведенные результаты дают возможность проследить характер изменения отдельных составляющих в зависимости от параметров электродвигателей. Так, амплитуды экспоненциальных и косинусных составляющих более выражены у двигателей меньшей мощности. С ростом мощности АД они значительно уменьшаются. Синусные составляющие, напротив, более сильно проявляются с ростом мощности АД. Электромагнитные постоянные времени затухания Тi значительно зависят от параметров двигателей. Очевидно, что при постоянном скольжении постоянные времени затухания отдельных составляющих увеличиваются с ростом номинальной мощности АД. Это подтверждает известный факт, что суммарный электромагнитный момент маломощных двигателей гораздо раньше достигает установившегося значения. Важно отметить, что для двигателей всех типоразмеров, во всем диапазоне скольжений 4-ая и 7-ая периодические составляющие характеризуются максимальными постоянными времени затухания Т4, Т7 (см. табл. 3.1) и, следовательно, определяют длительность затухания переходного электромагнитного момента в целом.