Задача № 1.3-1. Водяной пар при давлении Р1 = 20 бар с температурой t1 = 400 °C при истечении из сопла расширяется по адиабате до давления Р2 = 2 бар. Определить площадь минимального выходного сечения сопла, а также скорость потока пара в этих сечениях, если расход пара равен М = 4 кг/с. Изобразить процесс в h – S координатах.
Пример. Определить скорость истечения пара из котла в атмосферу, если его давление P1 = 12 бар и температура t1 = 300 °C. Барометрическое давление равно РБ = 750 ммHg.
Задачу решить для двух условий: а) истечение происходит через цилиндрическое сопло, б) через расширяющиеся сопло. Изобразить процесс истечения в h – S координатах.
Решение. Отношение давлений Р2/Р1 = 1/12 = 0,0834 < (0,546 = βкр). В первом случае давление в выходном сечении не может быть меньше РКР, которое определяется как Р2КР = Р1βкр = 12 бар × 0,546 = 6,6 бар.
Тогда скорость истечения будет критической и равна (значение энтальпии находится по диаграмме h – S (см. рис.8.6).
Во втором случае давление в выходном сечении может быть меньше критического, а именно равно атмосферному Р2 = 1 бар, и тогда скорость истечения будет больше критической.
Рис. 1.6.
Задача № 1.3-2. Пар давлением Р1 = 18 бар и Х1 = 0,92 вытекает в среду с давлением Р2 = 12 бар, площадь выходного сечения сопла f = 20 мм2. Определить скорость истечения пара, его секундный расход, и изобразить процесс в h – S координатах.
Задача № 1.3-3. Пар давлением Р1 = 16 бар и Х1 = 0,95 вытекает из сопла Лаваля в среду с давлением Р2 = 2 бар. Расход пара m = 6 кг/с. Определить скорость истечения пара, а также сечение сопла Лаваля: а) считая пар идеальным газом и приняв К = 1,3 и б) реальным газом.
Задача № 1.3-4. Пар при Р1 = 20 бар и t1 = 350 °C расширяется в сопле до Р2 = 1 бар. Пренебрегая потерями трения и считая расширение адиабатным, определить объемный и массовый расход пара, и его критическую скорость, если выходное сечение сопла f2 = 500 мм2. Изобразить процесс в h – S координатах.
Задача № 1.3-5. Пар при Р1 = 120 бар и t1 = 500 °C расширяется в сопле до Р2 = 50 бар. Определить вид сопла, критическую и выходную скорость пара, критическое и выходное сечение сопла, если скоростной коэффициент φ = 0,96, а расход пара m = 2,78 кг/с. Изобразить процесс в h – S координатах.
Задача № 1.3-6. Сухой насыщенный пар при Р1 = 10 бар расширяется в сопле до Р2 = 6 бар. Определить расход пара через сопло, если скоростной коэффициент φ = 0,97; а f2 = 365 мм2. Изобразить процесс в h – S координатах.
Задача № 1.3-7. В калориметре пар дросселируется до давления Р2 = 1 бар, t2 = 130 °C. Определить начальное состояние пара и изменение его параметров (P, v, t, S, h, u), если Р1 = 20 бар. Изобразить процесс в h – S координатах.
Задача № 1.3-8. Пар при Р1 = 12 бар и t1 = 350 °C дросселируется до Р2 = 5 бар и подается на турбину паросиловой установки с температурой конденсата 32,88 °C. На сколько работоспособность пара уменьшится после дросселирования по сравнению с начальным состоянием?
Пример. Пар с давлением Р1 = 18 бар и температурой t1 = 250 °C дросселируется до Р2 = 10 бар. Определить параметры и функции состояния пара и степень перегрева в конце процесса дросселирования.
Решение. По диаграмме h – S (см. рис.8.7) находим начальное состояние пара, точка 1. Принимая h1 = h2, находим конечное состояние пара, точка 2.
Степень перегрева пара определяется как:
Δtn1 = tn1 – tH1 = 250 °C – 208 °C = 42 °C,
Δtn2 = tn2 – tH2 = 234 °C – 180 °C = 54 °C.
Параметры и функции состояния пара: v1 = 0,125 м3/кг; S1 = 6,61 кДж/(кг×К); u1 = 2889 кДж/кг; h1 = h2 = 2911 кДж/кг; v2 = 0,225 м3/кг; S2 = 6,86 кДж/(кг×К); u2 = 2887 кДж/кг.
Задача № 1.3-9. До какого давления необходимо дросселировать пар, имеющий давление Р1 = 60 бар и степень сухости Х = 0,96, чтобы он стал сухим насыщенным?
Рис. 1.7.
Цикл, в результате которого получается положительная работа называется прямым циклом, или циклом теплового двигателя.
Термический КПД цикла Карно имеет наибольшее значение по сравнению с КПД любого цикла, осуществляемого в одном и том же интервале температур. Поэтому их сравнение позволяет делать заключение о степени совершенства использования теплоты в машине.
Однако не всегда удается осуществить цикл Карно и процессы его сопровождающие. Так, цикл Карно при использовании водяного пара в качестве рабочего тела, имеет ряд существенных недостатков и мало эффективен.
За основной цикл в паротрубной установке (ПТУ) принят идеальный цикл Ренкина, в котором осуществляется полная конденсация пара, для увеличения давления питательной воды используется насос и, кроме того, применяется перегретый пар, что позволяет повысить среднеинтегральную температуру. Процессы нагрева и охлаждения рабочего тела осуществляются при Р1 = РMAX = Const и P2 = PMIN = Const.
В ПТУ химическая энергия топлива при его сжигании превращается во внутреннюю энергию продуктов сгорания, которая затем в виде тепла передаются воде и пару в котле 1 (процесс 4 – 5 – 6) и пароперегревателе 2 (процесс 6 – 1), полученный пар, направляется в паровую турбину 3 (процесс 1 – 2), где и происходит преобразование теплоты в работу, а затем в электрическую энергию в электрогенераторе 4, отработанный пар поступает в конденсатор 5 (процесс 2 – 3), где отдает тепло охлаждающей воде.
Полученный конденсат, насосом 6, отправляется в питательный бак 7, откуда нагнетательным насосом 8 сжимается до Р1 = РMAX (процесс 3 – 4) и через водонагреватель 9 подается в котел 1 (см. рис.9.1).
Рис.2.1.
Термический КПД цикла Ренкина определяется в виде отношения полезной работы цикла ко всей затраченной в цикле теплоты:
(9.1)Удельные расходы пара d0 и теплоты q0 определяются как:
(9.2) (9.3)Характеристики ПТУ, формулы (9.1 – 9.3), легко определяются с помощью h – S диаграммы.
Задачи для самостоятельного решения.
Задача № 2-1. Паросиловая установка работает по циклу Ренкина. Параметры начального состояния: Р1 = 30 бар, t1 = 300 °C. Давление в конденсаторе Р2 = 0,04 бар. Определить термический КПД, изобразить процесс в T – S координатах.
Задача № 2-2. Сравнить термический КПД идеальных циклов, работающих при одинаковых начальных и конечных давлениях Р1 = 200 бар и Р2 = 0,2 бар, если в одном случае используется пар влажный со степенью сухости Х = 0,9, в другом – пар сухой насыщенный и в третьем – пар с температурой t1 = 300 °C. Изобразить циклы в T – S координатах.
Задача № 2-3. Определить работу 1 кг пара в цикле Ренкина, если параметры пара: Р1 = 20 бар, t1 = 450 °C и Р2 = 0,04 бар. Изобразить цикл в P – V, T – S и h – S координатах.
Пример. Паросиловая установка работает по циклу Ренкина с начальными параметрами пара Р1 = 20 бар, t1 = 300 °C. Давление в конденсаторе P2 = 0,04 бар. Определить термический КПД цикла и построить его в T – S координатах.
Решение.
По диаграмме h – S находим энтальпии пара в начальном и конечном состояниях: h1 = 3019 кДж/кг; h2 = 2036 кДж/кг; h2' = 121 кДж/кг.
Рис. 2.2.
Термический КПД цикла определяется как:
ηT = (h1 – h2) /(h1 – h'2) = (3019 – 2036) /(3019 – 121) = 0,3392.
Задача №9-4. Выявить зависимость (и изобразить ее графически) термических КПД циклов Ренкина от начальных давления и температуры пара, если: 1) давление Р1 изменяется в пределах Р1 = 35 бар, Р'1 = 70 бар, Р"1 = 140 бар и Р'''1 = 280 бар, а температура во всех случаях одинакова, и равна t1 = 450 °C; 2) температура изменяется в пределах t1 = 400 °C, t'1 = 450 °C, t"1 = 500 °C и t'''1 = 600 °C, а давление во всех случаях одинаково и равно Р2 = 0,04 бар. Изобразить оба вариантов циклов в T – S координатах.
Задача №9-5. В паросиловой установке, работающей по циклу Ренкина, параметры пара соответствуют Р1 = 300 бар, t1 = 550 °C и Р2 = 1 бар. При давлении Р' = 70 бар вводится вторичный перегрев пара до температуры t'1 = 540 °C. Определить термический КПД двух установок и конечную степень сухости. Изобразить циклы в T – S координатах.
Задача № 1-6. В паросиловой установке, работающей при параметрах P1 = 110 бар; t1= 500 °C, Р2 = 0,04 бар, введен вторичный перегрев пара при Р = 30 бар до начальной температуры t' =500 °C. Определить термические КПД циклов с вторичным перегревом пара и без него. Изобразить циклы в T – S координатах.
Задача № 1-7. Пар при Р1 = 35 бар и t1= 435 °C поступает на турбину мощностью N = 4000 кВт установки, работающей по циклу Ренкина. Определить КПД цикла, удельный и часовой расход пара, если давление в конденсаторе Р2 = 1,2 бар. Изобразить цикл в T – S координатах.
Задача № 1-8. Пар при Р1 = 100 бар и t1= 550 °C поступает на турбину мощностью N = 100000 кВт, работающую по циклу Ренкина. Давление в конденсаторе Р2 = 0,04 бар. Определить удельный d кг/кВт × ч и часовой G кг/ч расходы пара, работу 1 кг пара, количество тепла, подводимое в котле и отводимое в конденсаторе за 1 ч, термический КПД цикла ηt и термический КПД цикла Карно для этого же интервала температур. Изобразить циклы в T – S координатах.
Задача № 1-9. Как изменится термический КПД установки, работающей по циклу Ренкина с параметрами пара Р1 = 20 бар и t1 = 300 °C, если пар подвергается дросселированию в первом случае до Р'1 = 16 бар, а во втором Р"2 = 12 бар. Конечное давление во всех случаях принять равным Р2 = 0,2 бар. Изобразить циклы в T – S координатах.
В соответствии со вторым законом термодинамики, совершая обратный цикл Карно, т.е. затрачивая механическую работу, можно отнять некоторое количество теплоты от источника с низкой температурой и передать ее к источнику с более высокой температурой.