Н.Н.Бенардос и Н.Г.Славянов использовали открытие В.В.Петрова по плавлению и свариванию металлов в электрической дуге. Один из первых русских профессоров электротехники Михаил Андреевич Шателен писал: «Первая половина XIX в. была особенно богата результатами изучения электрического тока: была открыта электрическая дуга (В.В. Петров), были открыты термоэлектрические явления (Т. Зеебек, Ж. Пельтье); найден закон тепловых действий тока (закон Джоуля-Ленца), были определены законы химического действия тока (законы М. Фарадея), были установлены законы Г.Ома и Г. Кирхгофа, внесшие большую ясность в понимание явлений тока; были обнаружены свойства тока намагничивать железо и действовать на магниты; были найдены законы взаимодействия токов между собой и тока с магнитами; были открыты законы электромагнитной индукции».
С открытием вольтова столба ток стали применять для различных практических целей: для освещения, для нагрева, для разложения сложных химических веществ, для металлических покрытий и получения металлических оттисков (гальванопластика академика Б.С. Якоби), для целей связи (П.Л. Шиллинг, Б.С. Якоби), для двигателей (Э.Х. Ленц, Б.С. Якоби) и др.
Со временем вольтов появились другие источники электричества: гальванические, термоэлементы, динамо-машины, электрогенераторы.
Кроме постоянного тока появился однофазный переменный ток, получавшийся от электромагнитных генераторов, а позже – и трех-фазный ток (М.О. Доливо-Добровольский).
По мере развития электроэнергетики, внедрения ее в промышленность, транспорт, быт возникла потребность накопления электроэнергии. В.В. Петров в начале XIX в. создает предпосылки для создания аккумуляторов, проводит эксперименты.
Г. Планте создает свинцовый аккумулятор в 1859 г. К. Фор конструирует свинцово-кислотный аккумулятор в 1880 г. А.Н. Лодыгин разрабатывает теорию аккумулирования электричества для проектируемого электровертолета.
В 1886 г. М. Депре создает буферную аккумуляторную батарею.
В 1984 г. были созданы серно-натриевые аккумуляторы, намного превышающие по технико-экономическим показателям свинцовокислотные.
Приведем некоторые числовые данные для материалов, способных аккумулировать электрическую энергию, из расчета на 1 кг веса:
Pb 16 Вт·ч на 1 кг веса
Воздушно – Zn160 Вт·ч –––– « ––––
Li – Ni 200 Вт·ч –––– « ––––
S – Na300 Вт·ч –––– « ––––
Li – Cl 500 Вт·ч –––– « ––––
Бензиновый
двигатель 2400 Вт·ч –––– « –––– .
Аккумулирование электрической энергии необходимо для работы автономного транспорта – электромобилей, электровертолетов, подводных лодок; для накопления энергии в периоды её низкого потребления и выдачи её во время пиковых нагрузок и в других случаях.
Чтобы научить силу электрического тока стать творить чудеса, нужны были генераторы и электродвигатели. Над этим думали многие изобретатели, в том числе и русские.
Электродвигатели, электрогенераторы, трансформаторы
Открытия и исследования Д. Араго, Г. Эрстеда, А. Ампера, Г. Ома, М. Фарадея и других изобретателей и ученых послужили толчком для изобретательской фантазии инженеров, которые стали называться электриками. Важнейшим этапом в развитии электроэнергетики явилось изобретение и применение электрических машин.
В технике основными устройствами, использующими явление электромагнитной индукции, являются генераторы электрического тока, электродвигатели и трансформаторы. Рассмотрим их основное современное устройство и назначение, чтобы затем проследить исторические вехи разработки этих устройств и указать их авторов.
Генератор. Состоит из статора и ротора. Массивный неподвижный статор представляет собой полый стальной цилиндр, на внутренние стенки которого уложено большое число витков метал-лического провода, покрытого изоляцией и ведущего электричество во внешнюю электрическую цепь к потребителю.
Ротор представляет собой цилиндр с пазами для проводов, являющийся большим подвижным электромагнитом, установленным внутри статора.
Под действием паровой турбины, гидротурбины, паровой машины или другого двигателя ротор начинает вращаться, а в проводах статора, благодаря электромагнитной индукции, возникает электрический ток.
Электродвигатель. В электродвигателях происходит другое явление: электрический ток, протекая через провода статора, заставляет ротор вращаться. С помощью механических приспособлений движение ротора можно передать ленте трансмиссии, станку, эскалатору
метро и другим механизмам.
Трансформатор. Состоит из магнитного сердечника и двух или более катушек, которые имеют разное число витков. Если подвести переменный электрический ток к катушке с большим числом витков – ток большего напряжения, то со стороны катушки с меньшим числом витков можно снять больший ток, но меньшего напряжения.
Создание электрических генераторов, электродвигателей, трансформаторов требовало изучения свойств материалов: неметаллических, металлических и магнитных, создания их теории.
Первыми в этом направлении были работы профессора Московского Университета Александра Григорьевича Столетова (1839-1896). В 80-х гг. им была обнаружена петля гистерезиса и доменная структура у ферромагнитных материалов.
Братья Гопкинсоны разработали теорию электромагнитных цепей. В 1895 г. Пьер Кюри обнаружил существование у ферромагнетиков критической температуры, выше которой происходит исчезновение доменной структуры и потеря ферромагнетизма – точки Кюри.
Применение электричества для связи, освещения, двигательной силы потребовало создания электроизмерительных приборов, Системы единиц измерения.
К 80-м гг. появились гальванометры, амперметры, вольтметры, магазины сопротивления, а начало созданию электроизмерительных приборов положили М.В. Ломоносов, Г.В. Рихман, Б. Франклин еще в XVIII в.
В 1881 г. в Париже собрался первый Международный конгресс электриков. Было принято постановление о разработке единой системы единиц. В группу разработчиков входили: Г. Гельмгольц, Г. Кирхгоф, У. Томсон, Р. Клаузиус, А.Г. Столетов и др.
Электродвигатели
История создания двигателей уходит в глубокую древность. Сложными путями шел человек к открытию и познанию законов физики, созданию различных механизмов, машин.
Впервые двигатель назвал машиной римский зодчий Марк Полион (1 в. до н. э.).
Важнейшим этапом в развитии электроэнергетики явилось изобретение и применение электродвигателей. Принцип действия электродвигателей основан на физическом явлении: виток проводника, по которому протекает электрический ток, будучи помещенным между магнитами, движется поперек силовых линий магнитного поля. Электродвигатель, как правило, компактнее других двигателей, всегда готов к работе, может управляться на расстоянии.
История электродвигателя – сложная и длинная цепь открытий, находок, изобретений. Проследим этапы развития электродвигателей.
I этап. Начальный период развития электродвигателя (1821-1834гг.). Он тесно связан с созданием физических приборов для демонстрации непрерывного преобразования электрической энергии в механическую.
В 1821 г. М. Фарадей, исследуя взаимодействие проводников с током и магнитом, показал, что электрический ток вызывает вращение проводника вокруг магнита, или вращение магнита вокруг проводника. Опыт Фарадея показал принципиальную возможность построения электрического двигателя.
Многие исследователи предлагали различные конструкции электродвигателей.
Первые электродвигатели напоминали по устройству паровые машины: двигатель Дж. Генри (1832 г.) и двигатель У. Пейджема (1864 г.) имели коромысла, кривошип, шатун, а также золотники (переключатели тока в солено-идах, заменявших собой цилиндр).
П. Барлоу предложил «колесо Барлоу». Оно состояло из постоянного магнита и зубчатых колес, скользящий контакт осуществлялся с помощью ртути, а питалось колесо от гальванического элемента.
Дж. Генри предложил в 1832 г. модель двигателя с возвратнопоступательным движением: подвижный электромагнит поочередно притягивался к постоянным магнитам и отталкивался от них, замыкая и размыкая батареи гальванических элементов. Он совершал 75 качаний в минуту.
Было еще много попыток создания двигателей с качательным движением якоря. Однако более прогрессивными оказались попытки построить двигатель с вращательным движением якоря.
II этап. Второй этап развития электродвигателей (1834-1860 гг.) характеризуется конструкциями с вращательным движением явнополюсного якоря. Однако вращательный момент на валу у таких двигателей обычно был резко пульсирующим.
В 1834 г. Б.С. Якоби создал первый в мире электрический двигатель постоянного тока, в котором реализовал принцип непосредственного вращения подвижной части двигателя. В 1838 г. этот двигатель (0,5 кВт) был испытан на Неве для приведения в движение лодки с пассажирами (рис. 37), т. е. получил первое практическое применение.
Испытания различных конструкций электродвигателей привели Б.С. Якоби и других исследователей к следующим выводам:
- применение электродвигателей находится в прямой зависимости от удешевления электрической энергии, т.е. от создания генератора, более экономичного, чем гальванические элементы;
- электродвигатели должны иметь по возможности малые габариты и по возможности большую мощность и больший коэффициент полезного действия.
III этап. Третий этап в развитии электродвигателей (1860-1887 гг.) связан сразработкой конструкций с кольцевым неявнополюсным якорем и практическипостоянным вращающим моментом.
На этом этапе нужно отметить электродвигатель итальянца А. Пачинотти (1860 г.). Его двигатель состоял из якоря кольцеобразной формы, вращающегося в магнитном поле электромагнитов.