Подвод тока осуществлялся роликами. Обмотка электромагнитов включалась последовательно с обмоткой якоря (т.е. электромашина имела последовательное возбуждение). Габариты двигателя были невелики, он имел практически постоянный вращающий момент. В двигателе Пачинотти явнополюсный якорь был заменен неявнополюсным.
Барабанный якорь, в котором рабочим является проводник, составляющий виток, был изобретен лишь в 1872 г. В. Сименсом. Еще через 10 лет в железе якоря появились пазы для обмотки (1882 г.). Барабанный якорь машины постоянного тока стал таким, каким мы его можем видеть в настоящее время.
Третий этап развития электродвигателей характеризуется открытием и промышленным использованием принципа самовозбуждения, в связи с чем был окончательно осознан и сформулирован принцип обратимости электрической машины. Питание электродвигателей стало производиться от более дешевого источника электрической энергии – электромагнитного генератора постоянного тока.
В 1886 г. электродвигатель постоянного тока приобрел основные черты современной конструкции. В дальнейшем он все более и более совершенствовался.
По роду тока электродвигатели стали делиться на машины переменного и постоянного тока; по принципу действия машины переменного тока делятся на синхронные и асинхронные.
Асинхронные двигатели отличаются простотой конструкции, малой стоимостью, надежностью в работе. Они являются самым распространенным видом двигателей.
Электрогенераторы
Прототип генератора электрического тока, основанный на принципе электромагнитной индукции, был сконструирован Фарадеем в 1831 г. Он состоял из медного диска, вращающегося вручную между полюсами постоянного магнита. При этом в диске индуцировалась электродвижущая сила (ЭДС); полюсами служили ось диска и неподвижная щетка, имеющая скользящий контакт с краем диска.
После этого были предложены различные конструкции электромагнитных генераторов. Магнито-электрические машины были изготовлены многими изобретателями: У. Риччи, И. Пикси, Ю. Кларком и др., но все они были трудно применимы для практического использования.
По заказу А.М. Ампера в 1832 г. И. Пикси (1808-1835) изготовил первый электрический генератор с коммутатором для получения постоянного тока. Он приводился в движение вручную.
В 1842 г. Д.С. Вулрич изготовил мощный генератор постоянного тока, соединив его ременной передачей с паровой машиной. Такой генератор использовали для питания гальванических ванн.
1842 год считается годом рождения электроснабжения предприятий.
В 1856-1866 годах появилась идея самовозбуждения электрогенератора (без гальванического элемента). Многие исследователи, инженеры независимо друг от друга, раньше или позже пришли к этому: венгр А. Йедлик (1800-1895); немец Э.В. Сименс (1816-1892); англичане Г. Уайлд (1833-1919), С.А. Варли; американец М.Г. Фармер (1820-1893); датчанин С. Хьерт (1802-1870) и др.
Промышленное освоение электрогенераторов началось после 1870 г., когда француз З. Грамм создал генератор с кольцевым ротором, тороидальной обмоткой и коллектором почти современной конструкции. А. Пачинотти (1841-1912) на 10 лет раньше построил подобный электродвигатель.
В 1880 г. американец Т. Эдисон предложил делать магнитопровод якоря электрогенератора наборным из изолированных стальных листов. Это уменьшило потери и реакцию якоря.
В 1884 г. была предложена компенсационная обмотка, а в 1885 г. дополнительные полюса для уменьшения реакции якоря и улучшения коммутации.
Создание электрогенераторов и электродвигателей на постоянном токе решало многие вопросы существующей в то время энергетики, но передача энергии на дальние расстояния оказалась затруднительной.
В 1876 г. П.Н.Яблочков создал дуговые лампы, которые гораздо эффективнее работали на переменном токе. Для питания нескольких дуговых ламп от одного источника Яблочков использовал индукционные катушки с ответвлениями – прообраз трансформатора или простейший трансформатор с разомкнутым сердечником.
Введение переменного тока должно было позволить передавать электроэнергию с помощью повышающих трансформаторов напряжения на большие расстояния. Но теперь встал вопрос о создании генераторов переменного тока.
Впервые идею вращающегося электромагнитного поля высказал Д. Араго в 1821 г. В 1885 г. Г. Феррарис. (1847-1897) предложил использовать двухфазный ток (систему двух переменных токов, сдвинутых по фазе на 90°), который дает возможность получить «вращающееся магнитное поле», и построил двигатель переменного тока.
Н. Тесла (1856 – 1943) (рис. 40), удалось построить систему из двухфазного генератора, трансформатора и двигателя.
Она была использована на Ниагарской гидростанции в США, система требовала четыре провода для передачи электроэнергии.
В 1888 году русский изобретатель М.О. Доливо-Добровольский (1862-1919), создал трехфазную систему токов, которая затем получила признание и распространилась во всем мире как наиболее удобная и экономичная.
Вращающееся магнитное поле было получено путем сдвига фаз между токами одинаковой амплитуды на 120°. М.О. Доливо-Добровольский разработал ротор с обмоткой в виде беличьей клетки и создал короткозамкнутый асинхронный двигатель. Трехфазная система, состоящая изтрехфазного генератора, трехфазного двигателя (рис. 42), и трехфазного трансформатора, требовала для передачи и распределения электроэнергии всего три провода, являясь в то же время симметричной, уравновешенной и экономичной. Затраты металла были на 25 % меньше, чем в двухпроводной линии однофазной системы. Трехфазный синхронный генератор был построен Доливо-Добровольским в 1890 г. Впервые передача трехфазного тока на расстояние 170 км была продемонстрирована на Международной электротехнической выставке во Франкфурте-на-Майне в 1891 г. во время Международного конгресса электротехников.
На базе электрических генераторов и электродвигателей стал конструироваться индивидуальный привод станков, механизмов и устройств.
Первое защитное заземление электрических машин предложили русский инженер Р.Э. Классон и француз М. Депре. Генераторы электрического тока предъявили к первичному двигателю следующие требования: большое число оборотов, высокая равномерность вращения и непрерывно возрастающая мощность. Паровая машина уже не отвечала этим требованиям, Она имела 400-600 об/мин. Паровую машину вы теснила паровая турбина, которая имела большую скорость и более высокий КПД. Сейчас мощность паровых турбин достигает 1200 МВт. Турбина вместе с электрическим генератором называется турбогенератором
Трансформаторы
В 1848 г. французский механик Г. Румкорф изобрел индукционную катушку. Она явилась прообразом трансформатора.
П.Н. Яблочков, русский изобретатель, разработал систему «дробления» электрической энергии, впервые использовав индукционную катушку в качестве трансформатора с разомкнутым сердечником для питания нескольких дуговых ламп. По существу он в 1889 г. Создал первый силовой трансформатор.
В 1882 г. русский электротехник И.Ф. Усагин, а в 1884 г. французский инженер Болард создали трансформатор напряжения (для повышения или понижения напряжения). Разработка силовых транс
форматоров дала возможность передавать электричество на дальние расстояния, так как с возрастанием величины передаваемого напряжения уменьшаются потери электрической энергии, и появляется возможность уменьшить сечение проводов (рис. 43).
В 1885 году венгерские инженеры М. Дери и О. Блати вместе с К. Зиперовским разработали трансформаторы с замкнутым магнитопроводом. Появилась система распределения электроэнергии, основанная на параллельном подключении трансформаторов к питающей сети высокого напряжения.
В настоящее время на электрических станциях и подстанциях применяют понижающие и повышающие, двух- и трехобмоточные, трехфазные и однофазные силовые трансформаторы.
Трансформаторы тока применяют в установках переменного тока всех напряжений для последовательных катушек измерительных приборов и реле защиты.
Первичную обмотку трансформатора тока включают в цепь по следовательно, а ко вторичной обмотке также последовательно присоединяют катушки приборов и реле. Между первичной и вторичной обмотками трансформатора тока нет электрической связи, поэтому они надежно изолируют приборы и реле от напряжения установки.
Трансформаторы напряжения применяют в установках переменного тока для питания параллельных катушек измерительных приборов и реле защиты. Первичную обмотку трансформатора напряжения подключают параллельно к сети, а ко вторичной обмотке присоединяют параллельно катушки приборов и реле.
Трансформатор является одним из ключевых компонентов современной энергетической системы. Он преобразует напряжения в низкие или высокие с малыми потерями энергии. Является важным элементом многих электроприборов, механизмов и устройств: зарядных устройств, радиоприемников, телевизоров, подстанций, электростанций и т.п.
Размеры трансформаторов могут варьировать от горошины до громадин весом в 500 тонн. Уменьшение габаритов трансформаторов достигается за счет более эффективного отвода тепла с помощью вентиляторов, внешних радиаторов, специальных насосов. Применяются системы испарительного охлаждения, однако они пока слишком дороги. Процесс совершенствования системы изоляции и охлаждения трансформаторов продолжается: улучшаются конструкции трансформаторов, способы охлаждения, ведётся поиск возможности использования сверхпроводимости обмоток.
В настоящее время функции трансформаторов могут брать на себя полупроводниковые приборы. Однако трансформаторы еще будут выполнять свою службу довольно длительное время, эффективно и незаметно поддерживая функционирование электроэнергетических систем, от которых зависит так много в нашей современной жизни.