В 1893 году на весь мир прогремела брошюра, принадлежащая перу немецкого инженера Рудольфа Дизеля, с кричащим, сенсационным названием: "Теория и конструкция теплового двигателя, призванного заменить паровую машину и другие существующие в настоящее время двигатели".
Что же предлагал в своей брошюре Дизель? Он предлагал построить двигатель, который мог бы работать по циклу Карно. Однако уже после постройки первых моделей двигателя Дизель отошёл от многих предложений Карно и своих первоначальных замыслов, например, Дизель предлагал сжимать воздух до 250 атмосфер (огромное давление!), но в первом опытном двигателе давление дошло только до 34 атмосфер. Дизель также предлагал использовать в качестве топлива угольную пыль, но ему пришлось заменить её парами бензина, из-за чего при первом пуске двигателя в нём произошёл такой взрыв, что сам изобретатель и его помощники чудом остались живы.
После первых двух моделей Дизель построил третью, на которую уже можно было что - либо нагружать. Её конструкция и принцип действия показаны на рисунке. Двигатели Дизеля работали на керосине, и их КПД был выше, чем у обычных ДВС. Работа дизель - мотора проходила по циклу, изображённому на рисунке на стр.12, и как можно заметить, сильно отличавшемуся от цикла, предложенного Карно.
Впоследствии, дизель-мотор постепенно совершенствовался, в том числе и русскими инженерами; было установлено, что двигатель может работать и в два такта. После усовершенствований двигатель стал очень распространённым.
Дальнейшая же судьба самого Дизеля загадочна. В 1913 году он отплыл на пароходе "Дрезден" из Антверпена в Англию. Однако в английский порт Харви пароход пришёл без Дизеля. Но, несмотря на это, дизели продолжили победное шествие: во время Великой Отечественной войны русские танки Т-34 с дизельным двигателем были быстрее, маневреннее немецких танков с бензиновым двигателем.
Газовая турбина была двигателем, совмещавшим в себе полезные свойства паровых турбин (передача энергии к вращающемуся валу непосредственно, без использования сложных механических передач) и ДВС (отсутствие парового котла и всего его сложного хозяйства).
Устройство газовой турбины показано на рисунке. Двигатель состоит из компрессора, подогревателя, камеры сгорания и собственно самой турбины. В компрессоре, по устройству не отличающемся от турбины, происходит сжатие окислителя (воздуха), в подогревателе - подогревание окислителя, в камере сгорания - смешивание его с топливом и сгорание. В турбине проходит передача энергии газов лопаткам рабочих колёс. Сама турбина устроена также, как и паровая: имеется и направляющий аппарат, и рабочие колёса с лопатками. Газовая турбина является сложным двигателем, при постройке которого не обойтись без сложных расчётов. Но она, а точнее её "гибрид" с реактивными двигателями - турбореактивный двигатель - открыл для современной авиации скорости, превышающие скорость звука. Газотурбинный двигатель также применяется на ТЭС, где есть дешёвое жидкое или газообразное топливо, но есть недостаток воды, из-за чего нельзя применить паровую турбину.
Реактивные двигатели имеют довольно длинную историю. Первые упоминания о китайских огненных стрелах относятся к 1232 году, т.е. почти 800 лет назад. Но этот ещё примитивное оружие служило больше для устрашения противника и в качестве зажигательного средства. С появлением огнестрельного оружия ракеты были забыты на 6 веков. Лишь в 1804 году английский офицер Уильям Конгрев усовершенствовал ракеты и наладил их массовое производство. В 1807 году английскими ракетами был сожжён Копенгаген - по городу было выпущено более 25 тысяч ракет! Но с появлением нарезного оружия реактивный двигатель получил отставку на столетие. Возрождение ракет к жизни связано с работой русского учёного К. Циолковского "Исследование космических пространств реактивными приборами". В этой работе была представлена конструкция космического аппарата с принципиально новым по конструкции реактивным двигателем - на жидком топливе. В 1914 году американцу Роберту Годдарду был выдан патент на конструкцию многоступенчатой ракеты. В 30 - е годы работы по совершенствованию ракет и реактивных двигателей шли уже в нескольких странах. Самых ощутимых результатов достигли немецкие исследователи под руководством Вернера фон Брауна и Клауса Риделя. Созданная в немецком ракетном центре Пенемюнде баллистическая ракета "Фау - 2" была вершиной ракетостроения на протяжении полутора десятка лет.
Циолковский не рекомендовал применять твёрдое топливо в ракетах, в частности порох, так как он обладает низкой удельной теплотой сгорания. Но всё же реактивные двигатели на твёрдом топливе были первой вехой в эпохе ракетостроения. Русский революционер Кибальчич, находясь в Петропавловской крепости после покушения на Александра II, предложил проект ракеты с пороховым реактивным двигателем.
Но позже было доказано, что жидкотопливные реактивные двигатели более совершенны, более мощны и, следовательно, более перспективны.
Простейшим типом реактивного двигателя на жидком топливе является прямоточный двигатель (на верхнем рисунке). Принцип работы прост: кислород воздуха, попав в камеру сгорания через входное устройство, смешавшись с топливом, окисляет его, а раскалённые газы, вылетая из сопла, толкают двигатель вперёд. По конструкции двигатель ничем не отличается от трубы аэродинамической формы с отверстиями для впрыска топлива и поджога горючей смеси. Такая примитивность и обусловливает недостатки этого двигателя: он имеет низкий КПД, а для его запуска необходим разгонный двигатель.
Прямоточный двигатель после добавления нескольких деталей превращается в пульсирующий - реактивный двигатель, сделанный по формуле "Дёшево и сердито". Он представляет собой трубу аэродинамической формы, разделённую двумя перегородками с клапанами на 3 отсека: входное устройство, камеру сгорания, сопло (нижний рисунок).
Принцип работы достаточно прост: при пуске топливо смешивается с находящимся в камере сгорания воздухом и поджигается. Клапаны в левой перегородке закрыты, в правой - открываются, и через них в сопло попадают раскалённые продукты горения: двигатель получает толчок вперёд. Давление в камере сгорания оказывается ниже атмосферного, вследствие чего правые клапаны закрываются, левые - открываются, и в камеру сгорания засасывается следующая порция окислителя - в данном случае воздуха. В ходе работы двигатель движется толчками, как бы "пульсирует". Двигатель этой конструкции устанавливался на немецких самолётах-снарядах "Фау-1".
Первый генератор электрического тока изобрёл сам открыватель закона электромагнитной индукции - Майкл Фарадей. Это было ещё весьма примитивное устройство - медный диск вращался в магнитном поле, вследствие чего в нём создавалась ЭДС[3] (между центром и краями диска).
Генератор электрического тока был создан и изобретателем электродвигателя - Б.С. Якоби в 1842 году. Он предназначался для приведения в действие взрывателей пороховых мин и имел "карманный" размер (приводился вручную). По причине секретности работ с минами генератор Якоби не имел широкой известности.
Первые генераторы электрического тока, нашедшие хоть какое - то применение, использовали закон Фарадея без каких - либо собственных усовершенствований в их конструкции. Например, в динамо - машине Пиксии мимо катушек перемещались тяжёлые постоянные магниты. Большую работу в этой области электротехники проделал немецкий изобретатель Сименс. Однако первым, кто создал электрогенератор, получивший широкое распространение, был изобретатель (бывший столяр) Грамм.
Сначала все генераторы вырабатывали постоянный ток, но с открытием полезных свойств переменного тока (возможность трансформации и, как следствие, передачи на дальние расстояния) широко стали распространяться генераторы переменного тока, а вместе с ними - строительство электростанций, электрификация промышленности, транспорта и быта людей.
Генератор переменного тока.
Генераторы переменного тока получили широкое распространение из-за вышеупомянутых свойств переменного тока.
Устройство простейшего генератора переменного тока показано на рисунке: рамка вращается в магнитном поле, создаваемая ЭДС отводится с помощью контактных колец.
ЭДС создаётся за счёт изменения магнитного потока через рамку; мгновенное значение напряжения индукции равно: u = NBSwsinwt, где N- количество витков в рамке, В - индукция магнитного поля, S- площадь рамки, w- угловая скорость вращения, t- время. Максимальное значение (амплитуда) напряжения индукции равно: U = NBSw.
Сила тока, вырабатываемого в этом генераторе, изменяется по закону синуса и меняет свой знак дважды за период. Такой ток называется переменным.
Для создания магнитного поля применяются электромагниты, питающиеся от самого генератора. В мощных генераторах вращаются не обмотки, в которых индуцируется напряжение, а электромагниты.
Генератор постоянного тока.
Генератор постоянного тока основан почти на том же принципе, что и генератор переменного тока, только вместо контактных колец применяются насколько изолированных друг от друга полуколец (коммутаторов), предназначенных для переключения при изменении полярности напряжения ротора. При этом возникает постоянное пульсирующее напряжение, величина которого колеблется по синусоидальному закону. Пульсации можно уменьшить, применяя барабанный якорь, состоящий из большого числа смещённых относительно друг друга обмоток, соединенных с соответствующими сегментами коллектора (коммутатора). Для возбуждения электромагнитов применяется ток, индуцированный в якоре (принцип Сименса). Запуск обеспечивается только за счёт остаточного магнетизма.