Содержание
І. 1. Особенности становления квантовой механики и ее предмета.
2. Основные принципы квантово-механического описания.
ІІ. Чем отличаются статистические закономерности в природе от динамических. Приведите примеры.
ІІІ. 1. За какое выдающееся открытие два советских физика и один американский были удостоены в 1963 г. Нобелевской премии. Как оно связано с квантовой механикой.
І. 1. Особенности становления квантовой механики и ее предмета
Квантовая механика – это физическая теория, устанавливающая способ описания и законы движения на микроуровне. Ее появление совпало с началом века. В основе квантово – полевой картины мира (КПКМ) лежит новая физическая теория – квантовая механика, описывающая состояние и движение микрообъектов. Это была четвертая после механики, электродинамики и теории относительности фундаментальная физическая теория. Она является базой для развития современного естествознания. Ее разработка явилась величайшей революцией в познании мира. В основе квантовой механики лежат фундаментальные идеи о квантовании физических и величин и корпускулярно – волновом дуализме. Идея квантования сформировалась на основе ряда открытий в конце XІX – начале XX веков.
В 1897 г. был открыт электрон, его заряд оказался элементарным т.е. самым наименьшим, существующим в природе в свободном состоянии. Заряд любого тела равен целому числу элементарных зарядов. Таким образом, электрический заряд дискретен, равенство q = ± ne представляет формулу квантования электрического заряда.
Во второй половине XX в. в результате исследования теплового излучения было открыто ряд законов: Кирхгофа, Стефана – Больцмана, Вина
М. Планк в 1900 г. предположил следующую теорию (Квантовая гипотеза Планка), что свет испускается неделимыми порциями энергии – квантами и математически представил это в виде формулы
Е = hv
где V – частота света, а h – универсальная постоянная, характеризующая меру дискретной порции энергии, которой обмениваются вещество и излучение. В атомную теорию вошли, таким образом, прерывистые физические величины, которые могут изменятся только скачками.
Планк ввел в физику новые представления. Сам того же не желая Планк совершил переворот в физике. Его гипотеза стала началом новой квантовой физики (старая получила название классической). Квантовая гипотеза с момента ее появления упорно пробивала себе дорогу в физических представлениях и мировоззрении физиков. В конце XІX в. в результате экспериментов были установлены три закона фотоэффекта – это явление вырывания электронов из вещества под действием света.
Два из них – независимость энергии выбиваемых электронов от интенсивности света, а зависимость ее только от частоты и наличия для каждого вещества красной границы фотоэффекта (минимальной частоты, при которой фотоэффект еще возможен) – не объяснялись на основе представлений ЭМКМИ.
В 1905 году для решения этих трудностей молодой А. Эйнштейн не только принял квантовую гипотезу Планка, но и расширил ее, предположил, что свет не только излучается квантами, но и распространяется и поглощается квантами
Он первым понял, дискретность – свойство света. Электромагнитное поле – поток квантов (фотонов) Эйнштейну удалось объяснить все экспериментальные данные, относящиеся к явлению фотоэффекта, испусканию веществом электронов под воздействием электромагнитного излучения.
Электроны, поглощая фотоны, увеличивают свою энергию и в результате способны покинуть вещество.
В 1911 английский физик Э. Резерфорд предположил модель атома: электроны движутся по законам Максвелла вокруг значительно более массивного атомного ядра. Резерфорд изучал прохождение a - частиц через тонкую металлическую фольгу. Его модель атома позволяла объяснить результаты экспериментов, но она противоречива.
В 1913 г. Н. Бор предположил, что электроны находятся на стационарных орбитах и не излучают энергию. Порция энергии излучается лишь при переходе с одной стационарной орбиты на другую:
hv= Ен – Ек
где Ен и Ек – энергия электрона на его начальной и конечной орбитах.
Существенно новый импульс квантово – механические представления получили благодаря, выдвинутой в 1924г. французским физиком Л.де Бройлем гипотезы, так называемого корпускулярно – волнового дуаделизма. Он утверждал, что частицы материи (а не только фотоны) обладают как корпускулярными, так и волновыми свойствами. Теория Бора позволила понять и объяснить атомные спектры и другой экспериментальный материал, накопленный в физике в конце XІX первой четверти XX вв. Это был несомненный успех. Последовательной теорией атомных и ядерных процессов стала квантовая механика, созданная в 1924-1927 гг.
В квантовой механике одинаковые частицы в одинаковых условиях могут вести себя по – разному. Законы квантовой механики - законы статистического характера. Квантовая механика отказывается от поиска индивидуальных законов элементарных частиц и устанавливает статистические законы.
На базе квантовой механики невозможно описать положение и скорость элементарной частицы или предсказать ее будущий путь. Волны вероятности говорят о вероятности встретить электрон в том или ином месте.
Квантовая теория уже не допускает вполне объективного описания природы. Человек перешел на тот уровень исследования, где влияние оказывается неустранимым в ходе эксперимента и фиксируемым результатом является взаимодействие изучаемого объекта и измерительного прибора.
На основании квантовой механики объясняются многие микропроцессы, происходящие в пределах атома, ядра и элементарных частиц – появились новые отрасли современной физики: квантовая оптика и квантовая теория твердого тела, квантовая электродинамика и многие другие.
I. 2. Основные принципы квантово – механического описания
2.1 Принцип наблюдаемости
Согласно принципу наблюдаемости, сформулированному одним из основателей квантовой механики В. Гейзенбергом, «разумно включать в теорию только величины, поддающиеся наблюдению…» [12, с. 191].
В любой науке данные наблюдений становятся понятными лишь тогда, когда есть теория. Все физические теории, которые были известны ученым до создания квантовой механики, содержали исключительно понятия, прямо и непосредственно сопряженные с данными наблюдений.
ÂY = аn Y
Измерение имеет дело непосредственно с аn, собственными значениями оператора Â. Из трех физических конституентов.
Â, Y и аn измеряется лишь последний. Все физические теории, которые были известны учеными до создания квантовой механики, содержали исключительно понятия прямо и непосредственно сопряженные с данными наблюдений.
В квантовой механике появляются ранее неведомые физикам конструкты, волновая функция (Y)оператор ( Â), причем оба в принципе не могут быть зарегистрированы в эксперименте:
 и Y не наблюдаемы, лишь аn фиксируется в эксперименте.
Квантово-механическая реальность открывается в эксперименте лишь одной своей гранью. Вопреки расхожему мнению реальность дана не только в эксперименте, но и в теории. Разумеется, остается в силе старое правило: подтверждением теории является ее согласие с данными наблюдений. В науке, в том числе физике, данные наблюдений никогда не фигурируют отдельно от теории, т.е. концептуальной интерпретации. Главная цель ученых состоит в том, чтобы добиться гармонии, резонанса теории и эксперимента.
2.2 О наглядности квантово-механических явлений
Все, что происходит с квантовыми объектами до фиксации собственных значений
аn того или иного оператора Â, в эксперименте не фиксируется в непосредственном виде, а потому не дано в наглядной форме. Несостоятельна всякая попытка представления себе квантового объекта самого по себе, до его взаимодействия с макроусловиями его существования. Квантово-механические явления как таковые невозможно сфотографировать и представить их изображения, они не поддаются зарисовке. Это и не сгустки вещества, и не волны распределенные в реальном пространстве, и не материальные точки, движущиеся по траекториям.
Все попытки представить себе квантовые объекты и происходящие с ними процессы в наглядной, т.е. подвластной чувствам форме игнорируют специфику квантовой механики. Желающий уяснить себе природу квантово- механических явлений должен записать волновую функцию Y и те уравнения, в которых она фигурирует, а затем подвергнуть полученные записи всестороннему анализу, при этом часто оказывается возможным изображение аналитических выражений в форме графических построений. Природа квантово-механических явлений такова, что она может быть представлена в аналитико-графическом виде, но не в форме изображения объектов в пространстве.
Квантово-механические явления таковы, каковыми их описывают уравнения квантовой механики, исходя из которых можно предсказать, причем вероятностным образом, результаты измерений. Эти уравнения не позволяют предсказать наличие у квантовых объектов, каких- то «скрытых» параметров, доступных наблюдениям, если не настоящим, то будущим. При правильном понимании квантовой механики вопрос о скрытых параметрах вообще не возникает, он инициируется теми, кто абсолютизирует концептуальную базу классической физики, в результате чего переносит ее в квантовую механику.
Квантовая механика описывает поведение реальных, а не мифических частиц, но посредством особых концептуальных средств, иных, чем те, которые использовала классическая физика и от которых пришлось отказаться под давлением экспериментальных фактов.
2.3 Соотношение неопределенностей
Как было впервые подмечено В. Гейзенбергом, измеряемые значения координат квантовых объектов и их импульсов подчиняются соотношениям:
Х Рх> ђ, У Ру > ђ, Z Рz > ђ,