Смекни!
smekni.com

Квантовая статистика (стр. 2 из 2)

.

Обычно рассматриваются системы, у которых

. Для таких систем cогласно (1) можно пренебречь зависимостью энергии Ферми от температуры и считать

Вид функции Ферми приведен на рисунке.

полностью заполненные частицами, а все квантовые состояния с энергией

- пустые. Поэтому энергию Ферми при абсолютном нуле
можно определить как максимальную энергию частиц данной системы при T=00K. За счет нагрева системы часть частиц имевших при T=00K энергии меньше уровня Ферми приобретают энергии несколько выше уровня Ферми. При этом область частично заполненных квантовых состояний, т.е. область, где,
, имеет по шкале энергий размер порядка 2КТ.

Системы, описываемые квантовой статистикой Ферми-Дирака, называют вырожденными системами, в отличие от невырожденных систем классических частиц, подчиняющихся статистике Максвелла-Больцмана.

При температурах выше некоторой температуры TB, которая называется температурой вырождения системы, свойства системы фермионов изменяются так, что квантовая статистика Ферми-Дирака при Т>TB переходит в классическую статистику Максвелла-Вольцмана. При температуре выше температуры вырождения часть фермионов можно рассматривать как невырожденный классический газ. Температура вырождения системы зависит от ее энергии Ферми, т.е. от концентрации частиц n0, увеличиваясь с ростом n0.

Например, температура вырождения в калии,

;

.

.

.

Такие большие значения для температур вырождения электронного газа (порядка десятков тысяч градусов) получаются практически для всех металлов. Это говорит о том, что электронный газ в металле практически всегда следует рассматривать как вырожденный газ. Классическое описание его свойств с применением статики Максвелла-Больцмана невозможно.

Зная распределение dn(E) электронов в металле, можно установить распределение dn(P) электронов, по импульсам. Определим частичный случай распределения при Т=О.

,

.

.

При T=0, f(E,0) =1.

Работа выхода электрона из металла. Термоэлектронная эмиссия.

Формулы Ричардсона и Ричардсона-Дэшмана

Высокая электропроводимость металлов говорит о том, что электроны способны сравнительно свободно перемещаться внутри всей кристаллической решетки металла.

Затруднен их выход из металла, в вакуум, требующей затраты некоторой энергии, называемой 'работой выхода'.

Это навело на мысль рассматривать металл в первом приближении, просто как потенциальную яму, внутри которой (т.е. в металле) потенциальная энергия электрона равна нулю U0=0, а вне металла, т.е. в вакууме U>0. Эта упрощенная модель позволила объяснить многие явления.

Работа выхода - энергия, которую нужно затрачивать, чтобы энергия электрона стала больше высоты потенциального барьера в поверхностном слое металла. И благодаря туннельному эффекту электрон может покинуть металл.

По принципу Паули на каждом энергетическом уровне может находится max два электрона с противоположными спинами (два квантовых состояния).

верхняя граница заполненных уровней при T=0 (уровень Ферми).

- максимальный импульс при Т=0.

Для серебра

- плотность серебра.

A=107,9 - атомный вес (а. е. м).

или

Работа выхода

Глубина потенциальной ямы

, с квантовой точки зрения работа выхода равна разности высоты потенциального барьера и энергии Ферми

Работа выхода характеризует минимальную энергию, которую надо сообщить свободному электрону, находящемуся на уровне Ферми, чтобы он мог преодолеть потенциальный барьер на поверхности твердого тела и выйти за пределы металла,

При комнатной температуре число электронов, энергия которых достаточна для преодоления этого барьера, очень невелика. Однако их число резко возрастает с повышением температуры.

Явление испускания электронов нагретыми телами, называется термоэлектронной эмиссией.

Расчет плотности тока термоэлектронной эмиссии при некоторой температуре Т для металла с работой выхода А. определяется формулой Ричардсона - Дэшмана:

, где

C=Const=

Экспоненциальный множитель

для A>>KT определяет вероятность того, что электрон в металле при температуре Т имеет энергию Uo, достаточную, чтобы покинуть металл, преодолев потенциальный барьер вблизи поверхности металла. Все эти выводы получены с точки зрения квантовой статистики Ферми-Дирака для электронного газа, т.е. для частиц, имеющих полуцелый спин и подчиняющихся принципу Паули.

Дэшман получил формулу исходя из квантовых представлений в 1923г. а Ричардсон вывел в 1901г исходя из классических представлений.

Так эмиссия определяется

Изменение тока связанно с изменением температуры

Литература

1. Шпольский Э.В. "Атомные физика". т. I-II М. Наука, 1984 г.

2. Блохинцев Д.И. "Основы Квантовой механики" М. Наука, 1983 г.

3. Гольдин Л.Л., Новикова Г.И. "Введение в квантовую физику".М. Наука, 1988 г.

4. Матвеев А.Н. "Атомная физика" М. Высшая школа 1989 г.

5. Ландау Л.Д., Лифшиц Е.М. "Квантовая механика" М. Наука 1974 г.

6. Соколов А.А., Тернов Н.М., Жуковский В.Ч. "Квантовая механика" М. Наука 1979 г.

7. Фок В.А. "Начала квантовой механики" М Наука 1976 г.

8. Горяга Г.И. "Конспект лекций по атомной физике".М. Наука, 1985 г.

9. Киттель Ч. "Введение в физику твердого тела" (перевод с американского издания) М. Наука, 1978 г.

10. Бонч-Брусевич В.Л. "Физика полупроводников" М. Наука 1977 г.

11. Шиллинг Г. "Статистическая физика в примерах".М. МИР 1976 г.

12. Киреев П.С. "Физика полупроводников" М. Высшая школа, 1975 г.