Смекни!
smekni.com

Квантовый выход светочувствительных структур полупроводник-металл-диэлектрик (стр. 3 из 3)

Первым, еще в 70-х годах, голубой светодиод на основе пленок нитрида галлия на сапфировой подложке удалось получить профессору Жаку Панкову (Якову Исаевичу Панчечникову) из фирмы IBM (США). Квантовый выход был достаточен для практики (доли %), но срок их службы был ограничен. В р-области p-n-перехода концентрация дырок была мала, и сопротивление диодов оказалось слишком большим, они довольно быстро перегревались и выходили из строя. Работы Панкова в то время руководство фирмы IBM не поддержало.

В начале 80-х годов Г. В. Сапарин и М. В. Чукичев в Московском государственном университете им. М. В. Ломоносова обнаружили, что после действия электронного пучка образец GaN, легированный Zn, локально становится ярким люминофором. Были предложены устройства оптической памяти с пространственным разрешением 1-10 мкм. Но причину яркого свечения — активацию акцепторов Zn под влиянием пучка электронов — тогда понять не удалось.

Эту причину раскрыли И. Акасаки и Х. Амано из Нагойского университета. Дело оказалось в том, что примесные атомы Zn при росте кристалла реагировали с неизбежно присутствующими атомами водорода, образовывали нейтральный комплекс Zn-H+ и переставали работать акцепторами. Обработка электронным пучком разрушала связи Zn-H+ и возвращала атомам Zn акцепторную роль. Поняв это, японские ученые сделали принципиальный шаг в создании p-n-переходов из GaN. Для аналогичного акцептора, Mg, было показано, что обработкой сканирующим электронным пучком можно р-слой GaN с примесью Mg сделать ярко люминесцирующим, имеющим большую концентрацию дырок, которая необходима для эффективной инжекции дырок в p-n-переход. Авторы заявили патент на эффективное легирование GaN р-типа.

Однако разработчики светодиодов не обратили должного внимания на их публикации.

А прорыв в изготовлении голубых светодиодов совершил С. Накамура из фирмы Nichia Chemical. 29 ноября 1993 года, когда компания Nichia Chemical Industries объявила, что завершила разработку голубых светодиодов на основе GaN и планирует приступить к их массовому производству, общая реакция компаний, производящих оптоэлектронные приборы и компоненты была: «кто?». Лишь немногие, даже в Японии, когда-либо слышали о Nichia — эта компания никогда не значилась среди зарегистрированных в оптоэлектронной промышленности. И мало кто обратил внимание на пару статей, опубликованных незадолго до этого С. Накамурой, молодым исследователем из Nichia.

Накамура начал работу над созданием сине-зеленых светодиодов. Зная, что главной проблемой является получение подходящих материалов, а хорошим методом их выращивания — MOCVD (Metalorganic Chemical Vapor Deposition) — метод осаждения пленок из металлоорганических соединений.

Первый коммерческий синий светодиод был сделан Накамурой в начале 1994 года на основе гетероструктуры InGaN/AlGaN с активным слоем InGaN, легированным Zn.

Выходная мощность составляла 3 мВт при прямом токе 20 мА с квантовым выходом (отношением числа инжектированных электронов к числу образовавшихся фотонов) 5,4% на длине волны излучения 450 нм. Вскоре после этого за счет увеличения концентрации In в активном слое был изготовлен зеленый светодиод, излучавший с силой света 2 кд. Он состоит из 3-нанометрового активного слоя In0,2Ga0,8N, заключенного между слоями p-AlGaN и n-GaN, выращенными на сапфире. Такой тонкий слой InGaN сводит к минимуму влияния рассогласования решеток: упругое напряжение в слое может быть снято без образования дислокаций и качество кристалла остается высоким. Здесь слой InGaN образует одиночную квантовую яму, в которой локализованы электроны и дырки, поступающие из окружающего материала. Из-за пространственного ограничения движения носителей тока происходит эффективная излучательная рекомбинация. Скорость рекомбинации зависит от содержания In в активном слое и энергии квантованных состояний, которые, в свою очередь, зависят от толщины квантовой ямы и энергетического барьера между слоем InGaN и окружающим материалом, а изменение толщины дает возможность дополнительно управлять длиной волны излучения. В 1995 году при еще меньшей толщине слоя InGaN и более высоком содержании In удалось повысить силу света до 10 кд на длине волны 520 нм, а квантовую эффективность до 6,3%, причем время жизни светодиодов составляло 5х104ч (измеренное), а по теоретическим оценкам — более 106 ч (около 150 лет!).

Получение белого света с помощью светодиодов

На сегодняшний момент существует три способа получение белого света с помощью светодиодов: смешивание в определенной пропорции излучения красного, зеленого и синего светодиодов. При этом могут быть использованы как отдельные светодиоды разных цветов, так и 3-кристальные светодиоды, объединяющие кристаллы красного, синего и зеленого свечения в одном корпусе. На рис. 2 показано получение белого света путем смешивания в определенной пропорции излучения красного, зеленого и синего светодиодов.


Основой более дешевого и распространенного способа получения светодиода белого света является полупроводниковый кристалл структуры InGaN, излучающий на длине волны 460-470 нм (синий цвет) и нанесенный сверху на поверхность кристалла люминофор на основе YAG (иттрий-гадолиниевых гранатов, активизированный Се3+), излучающий в широком диапазоне видимого спектра и имеющий максимум в его желтой части спектра.

На рис. 3 показано получение белого света с помощью кристалла синего светодиода и нанесенного на него слоя желтого люминофора.

Человеческий глаз комбинацию такого рода воспринимает как белый цвет. Такие светодиоды намного дешевле 3-кристальных, обладают хорошей цветопередачей, а по светоотдаче (до 30 лм/Вт) они уже обогнали лампы накаливания (7-10 лм/Вт).


На рис. 4 показано строение 5-миллиметрового светодиода, излучающего белый свет.

Еще один метод получения белого света — возбуждение 3-слойного люминофора светодиодом ультрафиолетового спектра (УФ-СИД).

На рис. 5 показано получение белого света с помощью ультрафиолетового светодиода и RGB-люминофора.

У каждого способа есть свои достоинства и недостатки. Технология RGB в принципе позволяет не только получить белый цвет, но и перемещаться по цветовой диаграмме при изменении тока через разные светодиоды. Этим процессом можно управлять вручную или посредством программы, можно также получать различные цветовые температуры. Поэтому RGB-матрицы широко используются в светодинамических системах. Кроме того, большое количество светодиодов в матрице обеспечивает высокий суммарный световой поток и большую осевую силу света. Но световое пятно из-за аберраций оптической системы имеет неодинаковый цвет в центре и по краям, а главное, из-за неравномерного отвода тепла с краев матрицы и из ее середины светодиоды нагреваются по-разному, и, соответственно, по-разному изменяется их цвет в процессе старения — суммарные цветовая температура и цвет «плывут» за время эксплуатации. Это неприятное явление достаточно сложно и дорого скомпенсировать.

Белые светодиоды с люминофорами существенно дешевле, чем светодиодные RGB-матрицы (в пересчете на единицу светового потока), и позволяют получить хороший белый цвет. И для них в принципе не проблема попасть в точку с координатами (0,33; 0,33) на цветовой диаграмме МКО. Недостатки же таковы: во-первых, у них меньше, чем у RGB-матриц, светоотдача из-за преобразования света в слое люминофора; во-вторых, достаточно трудно точно проконтролировать равномерность нанесения люминофора в технологическом процессе и, следовательно, цветовую температуру; и, наконец, в-третьих — люминофор тоже стареет, причем быстрее, чем сам светодиод.

Промышленность на данный момент выпускает как светодиоды с люминофором, так и RGB-матрицы — у них разные области применения.

Как уже упоминалось, строение светодиода не ограничивается стандартным 5-мм корпусом и определяется мощностью излучения и прямым током, проходящим через диод. Световой поток, излучаемый светодиодом, напрямую зависит от прямого тока, протекающего через светодиод. Чем больше ток, тем ярче светит светодиод. Это связано с тем, что чем больше ток, тем больше электронов и дырок поступают в зону рекомбинации в единицу времени. Но ток нельзя увеличивать до бесконечности. Из-за внутреннего сопротивления полупроводника и p-n-перехо-да диод перегреется и выйдет из строя.


Заключение

В данной курсовой работе рассмотрен способ определения к.п.д. светочувствительных систем полупроводник-металл. Особенность предлагаемого способа состоит в регистрации изменения сопротивления металлического слоя системы полупроводник-диэлектрик под действием падающего излучения.

Одной из важных характеристик фотохимической реакции является К.П.Д. (квантовый выход). Он характеризует соотношение числа прореагировавших и поглотивших свет молекул (атомов).

Предлагаемый способ определения к.п.д. светочувствительных систем полупроводник-металл может найти практическое применение в фотолитографии, оптотехнике систем полупроводник-металл, при определении к.п.д. фотокатодов.


Список использованной литературы

1) Костышин М.Т., Михайловская Е.В., Романенко П.Ф. Об эффекте фотографической чувствительности тонких полупроводниковых слоев, находящихся на металлических подложках.- ФТТ, 1966, 8, 4, 571-572.

2) Migration of silver and gold in amorphous As2S3 / A. Buroff, E. Nebauer, P.Süptitz, I.Willert.- Phys. status solidi A, 1977, 40, 1, 195-198.

3) Костко В.С., Костко О.В., Маковецкий Г.И., Янушкевич К.И Светочувствительность тонкопленочной структуры SnI2-Sn-стекло и фазовый состав структуры SnI2-Cd-стекло// Весці Акад. навук Беларусі, Сер. фіз.-мат. навук.- 2001.- №1.- С.103-106.

4) Goldschmidt D., Rudman P.S. The kinetics of photodissolution of Ag in amorphous As2S3 films.- J. Non-cryst. solids, 1976, 22, 2, 229-243.

5) Способ нанесения рельефного изображения на диэлектрическую подложку: пат. 8800 Респ. Беларусь, G 03 C/ В.С.Костко, О.В.Костко; заявитель Брестск. гос. ун-т.- № а 20031065; заявл. 19.11.03; опубл. 30.07.05// Афіцыйны бюл./ Нац. цэнтр інтэлектуал. уласнасці.

6) Теренин А.Н. Фотоника молекул красителей и родственных органических соединений. Л.: Наука, 1967. 616.

7) Калверт Дж., Питтс Дж. Фотохимия. М.: Мир, 1968. 672.

8) Стефанович Г.Б. Фазовый переход металл-полупроводник в структурно разупорядоченной двуокиси ванадия. Дис. на соис. канд. физ.-мат. наук. Петрозаводск, 1986. 185 с. [10] ChudnovskiiF.A., StefanovichG.B. // J. SolidStateChem. 1992. V. 98. P. 137145.

9) Мокеров В.Г. и др. // ФТТ. 1976. Т. 18. № 7. C. 1801-1805.

10) В.И. Смирнов. Физико-химические основы технологии электронных средств. Учебное пособие. Ульяновск. 2005.