Во многих экспериментах измеряют два значения, которые, согласно теории должны быть равны. Две величины считаются равными, если их измеренные интервалы перекрываются. Например, импульсы р1 = 1,51±0,04 кг×м/с и р2= 1,56±0,06 кг×м/с можно
считать «равными с точностью до погрешностей измерений».
Все погрешности подразделяют на систематические, случайные и промахи.
Систематической называют такую погрешность, которая остается постоянной или закономерно изменяется при повторных измерениях одной и той же величины. Такие погрешности возникают в результате конструктивных особенностей измерительных приборов, неточности метода исследования, каких-либо упрощений экспериментатора, применении для вычислений неточных формул, округления констант. Систематические погрешности либо увеличивают, либо уменьшают результаты измерений. В любом измерительном приборе заложена та или иная систематическая погрешность, которую невозможно устранить, но которую можно учесть.
Случайные погрешности – ошибки, появление которых не может быть предупреждено, а их величина непредсказуема. Поэтому случайные погрешности могут оказать определенное влияние на отдельное измерение, но при многократных измерениях они подчиняются статистическим законам и их влияние на результаты измерений можно учесть или значительно уменьшить.
Промахи и грубые погрешности, – чрезвычайно большие ошибки, явно искажающие результаты измерения. Этот класс погрешностей вызван чаще всего неправильными действиями наблюдателя. Измерения, содержащие промахи, следует отбросить.
Для оценки полной погрешности необходимо знать и случайную и систематическую погрешности.
2. Оценка точности результатов одного прямого измерения
Если при повторении измерений в одних и тех же условиях 3 – 4 раза получено одно и то же значение, то это означает, что измерения не обнаруживают случайных изменений, а погрешность обусловлена только систематической погрешностью. Систематическая погрешность в данном случае определяется погрешностями измерительных приборов и часто называется инструментальной или приборной погрешностью. Есть несколько способов задания этой погрешности:
а) Для некоторых приборов инструментальная погрешность дается в виде абсолютной погрешности. Например, для штангенциркуля, в зависимости от конструкции его нониуса,– 0,1 мм или 0,05 мм, для микрометра – 0,01 мм.
б) Для характеристики большинства измерительных приборов часто используют понятие приведенной погрешности dп (класса точности).
Приведенная погрешность – это отношение абсолютной погрешности Dх к предельному значению хпр измеряемой величины (т.е. к наибольшему её значению, которое может быть измерено по шкале прибора). Приведенная погрешность обычно дается в процентах:
. (3)
По величине приведенной погрешности приборы разделяют на семь классов: 0,1; 0,2; 0,5; 1,0;1,5; 2,5; 4.
Зная класс прибора, можно рассчитать его абсолютную погрешность. Например, вольтметр имеет шкалу делений в пределах от 0 до 300 В(хпр=300 В) и класс точности 0,5. Тогда
.
в) В некоторых случаях используется смешанный способ задания инструментальной погрешности. Например, весы технические (Т–200) имеют класс точности 2. В то же время указывается, что при нагрузке до 20 г абсолютная погрешность равна 5 мг, до 100 г – 50 мг, до 200 г – 100 мг. Набор школьных гирь относится 4-му классу точности, а допустимые погрешности масс гирь указаны в таблице 1.
Таблица 1
Номинальное значение, г | 100 | 50 | 20 | 10 | 5 | 2 | 1 |
Абсолютная погрешность, мг | +40 | +30 | +20 | +12 | +8 | +6 | +4 |
Номинальное значение, г | 500 | 200 | 100 | 50 | 20 | 10 | 5 |
Абсолютная погрешность, мг | ±3 | ±2 | ±1 | ±1 | ±1 | ±1 | ±1 |
Если, например, при взвешивании на таких весах с таким набором гирь получено значение массы тела 170 г (100 г + 50 г + 20 г), то абсолютная погрешность взвешивания равна: Dх = 40 + 30 + 20 + 100 = 200 (мг)=0,2(г).
г) В тех случаях, когда класс точности прибора не указан, абсолютная погрешность принимается равной половине цены наименьшего деления шкалы прибора. Так при измерении линейкой, наименьшее деление которой 1 мм, абсолютная погрешность равна 0,5мм.
3. Статистический анализ случайных погрешностей
Пусть при повторении измерений одной и той же физической величины х в одинаковых условиях получены различные значения: x1, x2, …, xn. Это означает, что есть причины, приводящие к случайному «разбросу» измеряемой величины xi (помехи, трение и т. п.). В этом случае наилучшей оценкой измеряемой величиныявляется среднее арифметическое значение найденных значений xi
где n - число измерений.
. (5)
Наилучшей оценкой погрешности отдельного измерения в этом случае является стандартное отклонение (СО):
. (6)
Величину s2называют дисперсией.
На кривой нормального распределения случайных погрешностей (рис. 1) имеются две характерные точки перегиба А, А. Абсциссы этих точек равны ±s, т. е. стандартному отклонению. Можно показать, что вероятность появления погрешностей, не выходящих за пределы ±s, равна 0,6827 (» 68 %) . Иначе говоря, при достаточно большом числе измерений (практически при n³30) приблизительно 70 % результатов измерений будут попадать в интервал
измерений в доверительный интервал
Конечно, надёжность измерений может быть задана и большая, чем 0,68. В этом случае доверительный интервал расширяется и его границы могут быть рассчитаны с помощью так называемых коэффициентов Стьюдента. При выполнении учебных лабораторных работ вполне можно ограничиться надежностью a =0,68.
Стандартное отклонение характеризует среднюю погрешность отдельных измерений. Результат измерений есть разумная комбинация всех nизмерений, и поэтому имеются основания полагать, что он будет более надёжным, чем любое из отдельных измерений.
Стандартное отклонение среднего (СОС или SDOM - standarddeviationofthemean) равно стандартному отклонению s, деленному на :
. (7)
Таким образом, результат многократных измерений какой-либо физической величины должен представляться в виде:
Чтобы учесть и случайную и систематическую погрешность, т.е. рассчитать полную погрешность измерений, обычно используют правило квадратичного сложения:
4. Оценка точности косвенных измерений
Большинство физических величин обычно невозможно измерить непосредственно, и их определение включает два различных этапа. Сначала измеряют одну или более величин x,...,z, которые могут быть непосредственно измерены и, с помощью которых можно вычислить интересующую нас величину. Затем, используя измеренные значения x,..., z, вычисляют саму искомую величину. Если измерение включает эти два этапа, то и оценка погрешностей тоже включает их. Сначала надо оценить погрешности в величинах, которые измеряются непосредственно, а затем определить, к какой погрешности они приводят в конечном результате. При этом, конечно, необходимо учитывать вид функциональной связи между величинами.