Смекни!
smekni.com

Кинетика замедленной флуоресценции органических молекул в Н.-парафинах при 77 К и ее математическая модель (стр. 2 из 2)

, (6)

где

- константа скорости внутримолекулярной дезактивации триплетных возбуждений, которая связана со временем жизни молекул в триплетном состоянии
в отсутствие аннигиляции соотношением
. Наличие коэффициента «2» во втором слагаемом обусловлено тем, что в процессе внутримолекулярной дезактивации может участвовать как одна, так и другая молекулы из пары, а эти процессы являются независимыми.

В результате решения кинетического уравнения (6), имеем

, (7)

Поэтому затухание замедленной флуоресценции в этом случае происходит по такому же закону

. (8)

Здесь N0 и I0 – соответственно число пар и интенсивность в начале регистрации.

Рассмотрим различные соотношения между

и
.

1.

<<
.

В этом случае время затухания замедленной флуоресценции

, т.е. в два раза меньше времени затухания фосфоресценции [1].

2.

соизмеримо с
.

Тогда

определяется как константой скорости аннигиляции, так и константой скорости внутримолекулярной дезактивации триплетных возбуждений. Это является одной из причин того, что время затухания замедленной флуоресценции меньше, чем в первом случае.

3.

>>
.

При таком соотношении указанных величин

определяется в основном константой скорости триплет-триплетной аннигиляции и имеет наименьшее значение из всех рассмотренных случаев.

Следует заметить, что приведенные рассуждения справедливы в том случае, если

является одинаковой величиной для всех пар. Однако,
зависит как от расстояния между молекулами в паре, так и от их взаимной ориентации [3]. В реальных системах существует статистический разброс как по расстояниям, так и по ориентации молекул. Это приводит к статистическому разбросу
, следствием чего характер кинетики замедленной флуоресценции должен быть многоэкспоненциальным.

С учетом этого, закон затухания элементарного светового потока можно записать в виде

. (9)

Здесь

;
- функция распределения молекул по величине
, обусловленная статистическим разбросом по
.

Поскольку

имеет смысл плотности вероятности, то она нормирована на единицу

, (10)

где

и
- границы сегмента, на котором функция
отлична от нуля.

Поскольку

имеет точные грани на сегменте
и интегрируема на нем, а функция
не изменяет знак на этом сегменте и также интегрируема на нем, то на основании первой формулы среднего значения в обобщенном виде можно записать

, (11)

где

- некоторое число на данном сегменте.

Исходя из (10) можно записать

. (12)

С учетом (12) , после интегрирования (11), получим закон затухания

. (13)

Величина

соответствует наиболее слабому взаимодействию в паре, что соответствует случаю 1, рассмотренному выше. Исходя из этого, величина
может быть определена как

, (14)

где

- время жизни молекул в триплетном состоянии в отсутствие аннигиляции.

В пределе, когда константа скорости аннигиляции триплетных возбуждений намного меньше константы скорости внутримолекулярной дезактивации

. При этом выражение (13) представляет неопределенность
, после раскрытия которой по правилу Лопиталя получаем экспоненциальный закон затухания замедленной флуоресценции

(15)

со временем затухания

, что подтверждает справедливость формулы (13).

Обсуждение результатов

На рис.3 (а и б) представлены теоретические кривые (сплошные линии) затухания замедленной флуоресценции 1,2-бензперилена и коронена, построенные с использованием формулы (13). Параметр
определялся по формуле (14) и равнялся для 1,2-бензпирена - 1.03 с-1 и 0.24 с-1 для коронена. Оценка параметра
производилась по начальной стадии затухания, а затем варьировалась в небольших пределах до наилучшего совпадения с экспериментальными данными. Экспериментальные точки наилучшим образом укладываются на теоретическую кривую при
13,0 с-1 для 1,2-бензпирена и
1.0 с-1 для коронена.

Таким образом уравнение (13) удовлетворительно описывает затухание замедленной флуоресценции 1,2-бензпирена в додекане и коронена в н.-октане при 77 К.

Полученные значения

позволяют оценить интервал значений, в котором лежит
. Для 1,2-бензпирена он составляет ряд значений в области
, для коронена
. Отношение максимального значения
к
различно для каждого из веществ. В случае 1,2- бензпирена
>
более, чем в 23 раза, а в случае коронена – более, чем в 6 раз. Это хорошо согласуется со способами внедрения молекул в матрицы н.-парафинов. Несмотря на одинаковую концентрацию веществ, локальные концентрации вытесненных молекул, по-видимому, оказываются больше, чем внедренных. Это приводит к более эффективному сближению центров и увеличению вероятности триплет-триплетной аннигиляции.

Выводы

Математическая модель (9) кинетики затухания замедленной флуоресценции построена в предположении многоэкспоненциального ее характера. Интегрирование данной модели дает выражение (13), которое адекватно описывает изменение интенсивности замедленной флуоресценции как внедренных, так и вытесненных молекул в н.-парафинах при 77 К. Это в свою очередь подтверждает, что характер ее затухания определяется суммой экспонент с непрерывно изменяющимся временем затухания от

до
.

Авторы выражают благодарность Дерябину М.И. за обсуждение результатов.


список Литературы

1. Борисевич Н.А.// Известия АН СССР, сер. физическая. – 1980. – Т.44, №4. – С. 681-685.

2. Романовский Ю.В., Куликов С.Г., Персонов Р.И.// Физика твердого тела. – 1992. – Т.34, №4. – С. 445-456.

3. Ефремов Н.А., Куликов С.Г., Персонов Р.И., Романовский Ю.В.// Физика твердого тела. – 1992. – Т.34, №2. – С. 1188-1193.

4. Багнич С.А.// Физика твердого тела. – 2000. – Т.42,№10. – С.1729-1756.

5. Багнич С.А., Конаш А.В. // Оптика и спектроскопия. – 2002. – Т.92,№4. – С.556-563.

6. Брюханов В.В., Самусев И.Г., Карстина С.Г. // Журнал прикладной спектроскопии. – 2004. – Т.71,№1. – С.49-53.

7. Солодунов В.В., Гребенщиков Д.М. // Оптика и спектроскопия. – 1981. – Т.51, №2. – С. 374-376.

8. Солодунов В.В. // Современные аспекты тонкоструктурной и селективной спектроскопии. Межвузовский сборник научных трудов. – М., 1984. – С. 22-26.