При цьому хвиля не буде направлена строго по одному напряму, вона обов'язково поширюватиметься в деякому тілесному вугіллі. Означає в крапках на деяких відстанях в поперечному напрямі фаза коливань буде однаковою. І чим далі від джерела, тим ці відстані, природно, будуть більші. В такому разі говорять про просторову когерентність.
Тому можна, наприклад, освітити пару щілин досить видаленим джерелом електромагнітних коливань. Наприклад, вельми велика просторова когерентність в світла, яке приходить від зірок. Ось тільки сила світла при цьому виявляється дуже малою.
Простіше (при меншому видаленні від джерел і з більшою силою світла) освітити когерентним світлом одну вузьку щілину. Виділивши на ній поперечну смужку, ми можемо сподіватися, що в її межах вагання будуть когерентними. Така смужка може розглядатися як система безперервно розташованих точкових джерел, залежність амплітуди хвилі від кута ми з Вами раніше порахували:
.Чим вже щілина, тим більше кут, в межах якого відбувається випромінювання. І в межах цього кута випромінювання буде когерентним.
Ця ідея реалізована в класичному досвіді Юнга. На екрані спостерігається інтерференція когерентних хвиль від двох щілин, які, у свою чергу, освітлюють циліндровою хвилею від одиночної щілини.
У цьому досвіді була вивчена кореляція інтенсивності в світловому пучку. Світловий потік S (рис. 2.1) розділяється напівпрозорою пластиною А на дві частини, які прямують до фотоприймачів П1 і П2, проходячи різні довжини доріг.
Рис. 2.1 Дослідження Брауна і Твісса взаємозалежність кореляції інтенсивності від τ
Струм від приймачів, пропорційний світловому потоку, прямує в корелятор K, де у відповідних електричних ланцюгах виробляється струм, рівний твору сил струмів. Вимірюваною величиною є
(2.15) .Оскільки
, тут справа йде про кореляційну функцію четвертого порядку відносно напруженості поля. На рис. 2.1, була змальована залежність , знайдена в дослідах Брауна і Твісса, При дуже малих т значення близько до одиниці, при збільшенні т воно зменшується. При більших т функція практично постійна.Для пояснення такої поведінки
необхідно прийняти до уваги флуктуації інтенсивності світлового пучка. Якби флуктуації не було, то при всіх значеннях τ було б = 1. Проте за наявності флуктуації ситуація міняється. Для флуктуації можна визначити характерний масштаб часу. Якщо τ менше характерного часу флуктуації, то в кореляторі весь час реєструються приблизно однакові сили струмів і близька до одиниці. При збільшенні τ кореляція між силами струмів в кореляторі порушується, максимуми ока в одному каналі потрапляють на мінімуми в іншому і т. д., внаслідок чого зменшується. Коли τ перевершує характерний для флуктуації час, його збільшення не вносить вимірів до співвідношення струмів в каналах і значення залишається постійним. Функція дає інформацію про статистичні властивості випромінювання.Фото́н (грец. Φωτόνιο)— квант електромагнітного поля, елементарна частинка, що є носієм електромагнітної взаємодії.
Характеристики
Фотони не мають електричного заряду і маси спокою. Їхні основні характеристики: енергія, зв'язана з частотою за допомогою формули
і спін рівний одиниці. Фотон є істинно-нейтральною частинкою, що означає, що його античастинка є тим самим фотоном.Маса фотона може бути визначена з виразу для його енергії, або частоти
,де c — швидкість світла у вакуумі. Завдяки цій масі фотон взаємодіє з гравітаційним полем.
Імпульс фотона визначають за формулою
Фотони видимого світла мають енергії в діапазоні від 1,7 до 3 еВ; вони появляються при переходах атомів і молекул із збуджених станів в стани з меншою енергією. Гамма-фотони появляються в результаті аналогічних процесів, що відбуваються в середині атомних ядер. При гальмуванні електронів високих енергій можуть бути отримані фотони дуже великих енергій — до 1000 МеВ, що майже в 2 000 разів перевищує власну енергію нерухомого електрона. Фотони високих енергій можуть перетворитися в пару заряджених частинок - електрон й позитрон. При цьому енергія фотона, що зникає, повинна бути більшою за суму власних енергій частинок, що з'явилися.
Зареєструвати один електрон, що вийшов з фотокатода, практично неможливо (1 фотоелектрон в секунду відповідає струму 1.6 • 10-19 А). Принциповим для техніки спостережень слабких оптичних імпульсів з'явився винахід фотоелектронного помножувача — прибору, посилення фотоструму катода, що володіє можливістю, в мільйони разів.
Кожен фотоелектрон викликає лавину електронів, що містить у момент приходу на анод ФЕУ в середньому Про електронів (Про - коефіцієнт посилення ФЕУ), із загальним зарядом еО (е - заряд електрона). Отже, 1) число лавини электронов або, інакше, імпульсів ФЕУ в одиницю часу п пропорційно потоку фотонів, 2) повний заряд, що приходить на анод в секунду (або анодний фототек), який, також пропорційний .
Ці дві обставини і визначають два основні методи реєстрації сигналу ФЕУ. Історично перший називається методом виміру постійного струму і полягає у вимірі середнього значення що протікає через навантаження RL струму.
Другий спосіб може бути реалізований при малих значеннях постійною часу tе вихідного ланцюга. В цьому випадку сигнал на опорі RL є послідовністю негативних імпульсів напруги тривалістю t з середньою амплітудою . Кожен такий імпульс може бути окремо виявлений, а значить, підраховано їх загальне число за одиницю часу. Цей спосіб реєстрації називається методом рахунку фотонів. Важливою особливістю цього методу є неминуча наявність критерію виявлення імпульсу. Звичайно це так звана дискримінація, тобто порівняння електричного сигналу з деяким пороговим рівнем Т, перевищення якого інтерпретується як наявність придатного для подальшої реєстрації імпульсу.
Метод рахунку фотонів володіє рядом переваг: лінійність у великому діапазоні вимірюваних інтенсивностей, висока точність (досяжна точність, при якій помилка виміру визначається лише статистичними флуктуаціями потоку фотонів, оскільки всі фотони "зважають" на однакову статистичну вагу), зручність для подальшої обробки і видачі інформації, можливість зменшення темнового струму за рахунок відбору темнових імпульсів по амплітуді.
Залежність вихідного сигналу ( швидкості рахунку n, імп/с ) від напруги живлення називається рахунковою характеристикою фото помножувача (рис. 2.1, а).
Інша важлива характеристика ФЕУ - амплітудний розподіл вихідних імпульсів п(А), де п — число імпульсів та виході ФЕУ з амплітудою від А до. На рис. 2.1, би приведені типові залежності п(А) для сигнальних і темнових імпульсів (криві 1 і 2 відповідно).
Поведінка функції від 0 до А1 визначається імпульсами, які виникають в результаті термоемісії електронів з дінодів. Для А > А1 залежність n(А) визначається в основному імпульсами, які виникають в результаті посилення катодних термоелектронів. В цьому випадку n(А) має вигляд розподілу Пуассона з серед їй амплітудою А2 . Якщо встановити на виході ФЕУ порогову схему (дискримінатор), яка не пропустить імпульси з амплітудою А < = А1, то можна позбавитися від імпульсів динодів. Амплітудний розподіл імпульсів п(А) є диференційною характеристикою, тобто, де N (А) — число імпульсів з амплітудою, меншою чим А.
Рис. 2.2. Рахункова характеристикам амплітудний розподіл вихідних імпульсів ФЕУ
Якщо виміряти на виході ФЕУ число імпульсів, які пройшли порогову схему з рівнем дискримінації
, то, змінюючи, можна отримати, вельми схоже по формі на дзеркальне віддзеркалення рахункової характеристики. При цьому точка Аі відповідатиме мінімуму похідної, а точка А2 — максимуму.Рахункову характеристику можна вважати аналогом амплітудного розподілу. Рахункова характеристика знімається при постійному рівні дискримінації, але при напрузі живлення, що змінюється, а амплітудні розподіли - навпаки: при, але при змінюються амплітуди імпульсів на виході ФЕУ визначаються середнім коефіцієнтом посилення Ку ФЕУ. По рахункових характеристиках (лінійна ділянка II) вибирається робоча напруга живлення ФЕУ ін.