Смекни!
smekni.com

Колеблющиеся системы (стр. 3 из 3)

Здесь m – не обязательно целое число. Результат интерференции вторичных волн в точке P зависит от числа m открытых зон Френеля. Легко показать, что все зоны имеют одинаковую площадь:

Одинаковые по площади зоны должны были бы возбуждать в точке наблюдения колебания с одинаковой амплитудой. Однако у каждой последующей зоны угол α между лучом, проведенным в точку наблюдения, и нормалью к волновой поверхности возрастает. Френель высказал предположение (подтвержденное экспериментом), что с увеличением угла α амплитуда колебаний уменьшается, хотя и незначительно:

A1 > A2 > A3 > ... > A1,

где Am – амплитуда колебаний, вызванных m-й зоной.

С хорошим приближением можно считать, что амплитуда колебаний, вызываемых некоторой зоной, равна среднему арифметическому из амплитуд колебаний, вызываемых двумя соседними зонами, т. е.

Так как расстояния от двух соседних зон до точки наблюдения отличаются на λ / 2, следовательно, возбуждаемые этими зонами колебания находится в противофазе. Поэтому волны от любых двух соседних зон почти гасят друг друга. Суммарная амплитуда в точке наблюдения есть

A = A1 – A2 + A3 – A4 + ... = A1 – (A2 – A3) – (A4 – A5) – ... < A1.

Таким образом, суммарная амплитуда колебаний в точке P всегда меньше амплитуды колебаний, которые вызвала бы одна первая зона Френеля. В частности, если бы были открыты все зоны Френеля, то до точки наблюдения дошла бы невозмущенная препятствием волна с амплитудой A0. В этом случае можно записать:


Так как выражения, стоящие в скобках, равны нулю. Следовательно, действие (амплитуда), вызванное всем волновым фронтом, равно половине действия одной первой зоны.

Итак, если отверстие в непрозрачном экране оставляет открытой только одну зону Френеля, то амплитуда колебаний в точке наблюдения возрастает в 2 раза (а интенсивность в 4 раза) по сравнению с действием невозмущенной волны. Если открыть две зоны, то амплитуда колебаний обращается в нуль. Если изготовить непрозрачный экран, который оставлял бы открытыми только несколько нечетных (или только несколько четных) зон, то амплитуда колебаний резко возрастает. Например, если открыты 1, 3 и 5 зоны, то

A = 6A0, I = 36I0.

Такие пластинки, обладающие свойством фокусировать свет, называются зонными пластинками.

При дифракции света на круглом диске закрытыми оказываются зоны Френеля первых номеров от 1 до m. Тогда амплитуда колебаний в точке наблюдения будет равна

или A = Am + 1 / 2, так как выражения, стоящие в скобках, равны нулю. Если диск закрывает зоны не слишком больших номеров, то Am + 1 ≈ 2A0 и A ≈ A0, т. е. в центре картины при дифракции света на диске наблюдается интерференционный максимум. Это – так называемое пятно Пуассона, оно окружено светлыми и темными дифракционными кольцами.

Оценим размеры зон Френеля. Пусть, например, дифракционная картина наблюдается на экране, расположенном на расстоянии L = 1 м от препятствия. Длина волны света λ = 600 нм (красный свет). Тогда радиус первой зоны Френеля есть

Таким образом, в оптическом диапазоне вследствие малости длины волны размер зон Френеля оказывается достаточно малым. Дифракционные явления проявляются наиболее отчетливо, когда на препятствии укладывается лишь небольшое число зон:

Это соотношение можно рассматривать как критерий наблюдения дифракции. Если число зон Френеля, укладывающихся на препятствии, становится очень большим, дифракционные явления практически незаметны:

Это сильное неравенство определяет границу применимости геометрической оптики. Узкий пучок света, который в геометрической оптике называется лучом, может быть сформирован только при выполнении этого условия. Таким образом, геометрическая оптика является предельным случаем волновой оптики.

Выше был рассмотрен случай дифракции света от удаленного источника на препятствиях круглой формы. Если точечный источник света находится на конечном расстоянии, то на препятствие падает сферически расходящаяся волна. В этом случае геометрия задачи несколько усложняется, так как зоны Френеля теперь нужно строить не на плоской, а на сферической поверхности .

Расчет приводит к следующему выражению для радиусов ρm зон Френеля на сферическом фронте волны:

Все выводы изложенной выше теории Френеля остаются справедливыми и в этом случае.

Следует отметить, что теория дифракции (и интерференции) световых волн применима к волнам любой физической природы. В этом проявляется общность волновых закономерностей. Физическая природа света в начале XIX века, когда Т. Юнг, О. Френель и другие ученые развивали волновые представления, еще не была известна.

Вопрос 6

Что такое лазер? Каков принцип действия лазера?

Слово лазер образовано как сочетание первых букв слов английского выражения «Light Amplification by Stimulated Emission of Radiation» («усиление света при помощи индуцированного излучения»).

Лазерные источники света обладают рядом существенных преимуществ по сравнению с другими источниками света:

1. Лазеры способны создавать пучки света с очень малым углом расхождения (около 10-5 рад). На Луне такой пучок, испущенный с Земли, дает пятно диаметром 3 км.

2. Свет лазера обладает исключительной монохроматичностью. В отличие от обычных источников света, атомы которых излучают свет независимо друг от друга, в лазерах атомы излучают свет согласованно. Поэтому фаза волны не испытывает нерегулярных изменений.

3. Лазеры являются самыми мощными источниками света. В узком интервале спектра кратковременно (в течение промежутка времени продолжительностью порядка 10-13 с) у некоторых типов лазеров достигается мощность излучения 1017 Вт/см2, в то время как мощность излучения Солнца равна только 7(103 Вт/см2, причем суммарно по всему спектру. На узкий же интервал ((=10-6 см (ширина спектральной линии лазера) приходится у Солнца всего лишь 0,2 Вт/см2. Напряженность электрического поля в электромагнитной волне, излучаемой лазером, превышает напряженность поля внутри атома.

В обычных условиях большинство атомов находится в низшем энергетическом состоянии. Поэтому при низких температурах вещества не светятся.

При прохождении электромагнитной волны сквозь вещество её энергия поглощается. За счёт поглощённой энергии волны часть атомов возбуждается, т. е. Переходит в высшее энергетическое состояние. При этом от светового пучка отнимается энергия h =E2-E1 равная разности энергий между уровнями 2 и 1.

Вопрос 7

Через блок, имеющий форму диска перекинут шнур. Концам шнура привязали грузики массой 100 и 110 г. С каким угловым ускорением будут двигаться грузики, если масса блока равна 400 г?

a = m2g / (2m1 – m2) = 110*9.8/ (2*100-110) = 11.98 м/с2


Вопрос 8

Человеческое ухо может воспринимать звуки частотой приблизительно от 20 до 20000 Гц. Между какими длинами волн лежит интервал слышимости звуковых колебаний? Скорость звука в воздухе считать равной 330 м/с.

Длина волны равна:

λ = υ/ν

Принимая скорость звука 330 м/с, получаем

λ1 = υ/ν1= 330/20 = 16,5

λ2 = υ/ν2= 330/20 000= 0,0165

Ответ: интервал слышимости звуковых колебаний лежит между длиной волны равной 0,0165 и длиной волны равной 16,5 мкм.

Вопрос 9

Разность потенциалов между катодом и анодом электронного устройства 90 В, расстояние 1 мм. С каким ускорением движется электрон от катода к аноду? Какую скорость приобретет электрон, подлетая к аноду? За какое время электрон пролетит расстояние от катода до анода? Поле считать однородным.

Δφ= 90 B

В качестве пpимеpа pассмотpим движение заpяженной частицы в одноpодном магнитном поле. Сначала pассмотpим случай, когда частица влетает в магнитное поле пеpпендикуляpно к его силовым линиям. В этом случае магнитная сила не в состоянии вывести частицу из плоскости, пеpпендикуляpной к полю, т.к. сама пеpпендикуляpна к линиям поля. Учитывая, что магнитное поле не совеpшает pаботы над заpяженной частицей, ее кинетическая энеpгия остается постоянной (остается постоянным модуль скоpости частицы). Магнитное поле способно изменять только напpавление движения частицы. Поэтому ноpмальное ускоpение отлично от нуля.

Запишем уpавнение движения частицы. Согласно втоpому закону Ньютона

Отсюда следует, что pадиус кpивизны тpаектоpии движения частицы есть постоянная величина. Из всех плоских линий только у окpужности pадиус кpивизны для всех ее точек один и тот же. Следовательно, в данном случае частица движется по окpужности с pадиусом

Найдем пеpиод обpащения частицы по окpужности. Для этого pазделим длину окружности на скорость частицы:

Фоpмула показывает, что в одноpодном магнитном поле заpяженная частица движется с пеpиодом, не зависящим от ее скоpости, до тех поp, пока не сказывается pелятивистский эффект возpастания массы с увеличением скоpости. (Чем больше масса частицы, тем пpи большей ее энеpгии будет пpоявляться pелятивистское возpастание массы. У электpонов оно пpоявляется pаньше всего.)

Вопрос 10

Во сколько раз уменьшается интенсивность естественного света, прошедшего через два николя, угол между плоскостями поляризации которых равен 60?

Интенсивность волны равна:

Ослабление неполяризованного света через 1й николь =0.5.

После этого уже поляризованный свет подает на 2й николь повернутый на 60 град.

Он дополнительно ослабляет на 1*cos(60)2.

Итого ослабление будет =0.5*cos(60)2. = 0,25

Интенсивность естественного света уменьшается в 4 раза.