Смекни!
smekni.com

Коливальний рух (стр. 2 из 2)


Мал.12.7. Рідке тертя.


3.Додавання коливань.

а) Додавання коливань одного напрямку.

1). Нехай коливання мають однакові частоти

Для спрощення початкова фаза першого дорівнює нулю. Скористаємося методом векторних діаграм:




Далі буде показано, що повна енергія тіла, що коливається, пропорційна квадрату амплітуди; тому (12.7) можна представити так:

(12.9)

Повна енергія залежить від різниці фаз

і може бути як більше, так і менше суми енергії коливань, що додаються. Даний випадок називають Інтерференцією, а коливання, що задовольняють умові незмінності початкових фаз з часом – когерентними.

2).Якщо частоти коливань різні

, то одержується складне не гармонічне коливання. При
, але
, виникають коливання з періодичною зміною амплітуди, які називаються биттям.

Нехай


б)Додавання взаємно перпендикулярних коливань. Фігури лісажу.

В загальному виді коливання задаються рівняннями:

Розглянемо окремі випадки.

1)

або

Це – відрізок прямої.

2)

При

КОЛО.

ЕЛІПС.

При

, але
(чи
) де k ціле число (k=2,3,4…), одержуються більш складні фігури, які дістали назву фігур Лісажжу. Спостерігати ці фігури можна на екрані осцилографа, подаючи на його входи “
” та “
” коливання від двох генераторів. Форма фігур залежить від співвідношення частот і різниці фаз коливань, що додаються (мал. 12.11).