Лазерный метод получения водных суспензий наночастиц металлов
Введение
В настоящее время большой практический интерес приобретают эффективные методы получения наноразмерных объектов и контроля их характеристик. Физические и химические свойства материи в этой области размеров отличаются как от свойств отдельных атомов и ионов, так и от свойств массивного вещества. Например, для многих металлов при переходе в наносостояние существенно изменяются механические, электрические, магнитные, оптические и химические свойства. Это позволяет усиливать или ослаблять известные свойства металлов, а также создавать совершенно новые металлические или металлсодержащие материалы с требуемыми свойствами. Большой интерес представляет применение наноматериалов в таких областях, как медицина, легкая и химическая промышленность, электроника и т.д.
Разработанные в настоящее время методы получения суспензий наночастиц металлов можно разделить на две группы по характеру процессов, приводящих к формированию нанообъектов: химические и физические. К числу химических можно причислить восстановление ионов металлов в растворах [1] и т.д. К физическим методам относятся: электрический разряд в жидкостях [2], лазерная эрозия в жидкостях [3] и атмосфере [4]. В данной работе рассматриваются: способ получения водных суспензий наночастиц металлов, на примере серебра, (с применением метода лазерной эрозии в атмосфере) и методы определения характеристик наноразмерных частиц в суспензиях.
Метод лазерной эрозии
Действие механизма данного метода заключается в следующем: приповерхностный слой металла в процессе воздействия лазерного излучения умеренной плотности мощности разогревается до температур, бόльших температуры кипения, и образующиеся парогазовые пузырьки, лопаясь, поставляют частицы жидкой фазы в эрозионный факел металла. Согласно теоретическим оценкам, проведенным для сред, которые не имеют микродефектов, а также сред, не содержащих газы, процесс объемного парообразования имеет существенное значение при плотностях мощности больших 108 Вт/см2 [5]. В реальных условиях процесс объемного парообразования начинается при гораздо меньших плотностях мощности [6].
При этом возникающие частицы двигаются по нормали к поверхности мишени, увлекаемые парами материала мишени. Если на пути подобного пучка частиц поместить улавливающую среду (жидкость, подложка, полимерная матрица) – возможно формирование субстратов, содержащих наночастицы материала мишени[4].
Методы контроля характеристик наноразмерных объектов
Метод лазерного зондирования
Сущность метода лазерного зондирования, применительно к данной работе, заключается в следующем. На исследуемый образец (кювета с суспензией), помещенный в центре интегрирующей сферы, подается зондирующее лазерное излучение. Рассеянное данным объектом излучение равномерно распределяется по внутренней матовой поверхности сферы. Для определения интенсивности рассеянного излучения в одно из отверстий сферы помещается оптический датчик. Два других оптических датчика регистрируют интенсивности падающего (зондирующего) и прошедшего образец компонент лазерного излучения. Из баланса энергии зондирующего излучения находится поглощенная образцом часть излучения. Зная, таким образом, экспериментально полученное соотношение рассеянной и поглощенной образцом компонент излучения, при помощи законов теории рассеяния удается определить эффективный диаметр и концентрацию частиц, размеры которых значительно меньше длины волны зондирующего излучения, которая в данном случае составляет 694,3 нм. Для более крупных частиц (соразмерных с длиной волны зондирующего излучения) соотношение между рассеянием и поглощением зависит лишь от физической природы вещества частиц, и в данном диапазоне размеров частиц методика имеет большую погрешность. Более подробно данная методика описана в работе [4]. К основным достоинствам этого метода следует отнести: 1). Возможность экспресс-анализа, 2). Дешевизна оборудования, 3). Дистанционность, неразрушающий контроль.
Метод спектроскопии плазмонного резонанса
Стабильный коллоидный раствор металлических наночастиц в жидкостях в ряде случаев позволяет наблюдать специфическое оптическое явление – возникновение так называемой плазмонной полосы поглощения суспензии частиц. Наличие данной полосы обусловлено присутствием в суспензии частиц металлов с малыми размерами (десятки нанометров). Т.е. фактически размеры частиц становятся соизмеримыми с длиной свободного пробега электронов в металле, таким образом, валентные электроны образуют «шубу» наночастицы, активно взаимодействующую с падающим излучением. Для большинства металлов данные плазмонные полосы находятся в ультрафиолетовой части спектра, лишь для Ag, Cu и Au они смещаются в видимую часть спектра. Следовательно, регистрируя спектры поглощения исследуемых суспензий, по наличию плазмонных полос можно судить о присутствии наноразмерных частиц определенных металлов в суспензии. Положение же максимума и ширина такой полосы содержат информацию о распределении частиц по размерам. Спектральное расположение плазмонных полос для широкого круга металлов хорошо исследовано [1,3], однако в связи с тем, что в научной литературе в основном присутствуют данные для коллоидных растворов, полученных химическими методами, необходим их пересмотр для физических методов получения наночастиц. Это обусловлено присутствием в химически сформированных коллоидах одновременно ионной, нано- и макро- фаз исследуемого металла. Физические методы получения наноразмерных объектов обладают гораздо более высокой селективностью. Основные достоинства данного метода во многом совпадают с предыдущим с тем лишь различием, что используется более дорогая техника спектроскопии. Основная сложность – соотнесение максимума плазмонной полосы поглощения и размеров нанообъектов.
Фотоэлектрические свойства сегнетоэлектриков во многом определяются набором глубокоуровневых центров (ГЦ) захвата носителей заряда, исследование которого представляет сложную задачу в связи с большим удельным сопротивлением материала и наличием встроенных электрических полей, обусловленных доменной структурой. В настоящей работе представлены результаты исследований электрически активных дефектов TlGaSe2 методом фотоэлектрической релаксационной спектроскопии (PICTS [1,2]).
Полученные методом Бриджмена монокристаллы TlGaSe2, имели р-тип проводимости с концентрацией носителей заряда ~ 1015 см-3 при 300 К. Световое возбуждение (hν = 1.84 – 1,93 эВ) выбиралось из условия получения максимального фотоотклика. Плотность потока фотонов на поверхности образца составляла 5·1015 см-2 с-1.
В PICTS спектрах наблюдалось пять максимумов А1 - А5 (см. рис. 1 и табл. 1). Смещение их температурного положения в наборе спектров позволяет сопоставить максимумы термоэмиссии с ГЦ, заполняемых при фотовозбуждении. Соответствующие графики в аррениусовом масштабе показаны на рис.1. В таблице приведены области температур регистрации термоэмиссии с ГЦ, энергии их термоактивации Et и эффективные сечения захвата St.
Таблица | ||||
Номер пика | T, K | тип ГЦ | Et, эВ | St, см-2 |
A1 | 100-115 | - | 0,12 | 4·10-18 |
A2 | 120-130 | донор | 0,36 | 7·10-09 |
A3 | 165-190 | акцептор | 0,24 | 2·10-17 |
A4 | 210-240 | донор | 0,44 | 4·10-14 |
A5 | 270-320 | акцептор | 0,31 | 2·10-19 |
Рис.1. Температурные зависимости скорости термоэмиссии et для ГЦ А1—А5 и стационарного фототока (кривая 1) в аррениусовых координатах. |
Обнаруженные ГЦ можно связать с собственными дефектами материала либо неконтролируемыми примесями.Для пика А5 величина Et хорошо согласуется с энергией термоактивации акцептора, контро-лирующего температурную зависи-мость проводимости в области температур 220 - 300 К [3,4]. Положение пика А3 согласуется с энергией термоактивации Et акцептора, контролирующего температур-ную зависимость проводимости при более низких температурах [5-7]. На температурной зависимости стационарного фототока (рис.1) наблюдаются два участка отчетливо выраженного термического гашения фототока, сопоставимые с температурами интенсивной перезарядки при освещении центров А2 и А4. Можно заключить, что, захватывая электроны, эти ГЦ играют роль фоточувствляющих центров [8].
Создание источников магнитных полей с заданным пространственным распределением и силовыми характеристиками обычно связано с большим объемом работ по моделированию, проведению численных расчетов и сопоставлению результатов этих расчетов с экспериментальными исследованиями. Важнейшим свойством большей части таких источников является наличие симметрии в их конструкции. Учитывая только симметрию можно аналитически получить некоторые характеристики поля, не прибегая к численным расчетам.
Очевидно, что между параметрами источника и характеристиками созданного им магнитостатического поля существует тесная связь, обусловленная симметрией: тому или иному виду симметрии источника соответствует вполне определенный характер симметрии в распределении параметров созданного им поля. Поэтому исследования этой связи аналитическими методами, даже на упрощенных моделях, позволяют определить интервал, в котором следует искать нужное сочетание геометрических параметров источника. Такой подход особенно оправдан при исследовании источников, состоящих из отдельных, пространственно разделенных частей. Примером таких источников может служить магнитная система диагностических и очистных поршней для газо- и нефтепроводов. Очевидно, что в этом случае источник должен иметь осевую симметрию. Однако каким должен быть порядок такой симметрии для получения максимальной величины пондеромоторного взаимодействия без дополнительных исследований сказать трудно.