Смекни!
smekni.com

Линейные электрические цепи (стр. 2 из 2)

Δ = – 0,01 0,03 – 0,01 = 0,000096 – 0,000002 – 0,000002 –

– 0,02 – 0,01 0,08

– 0,000012 – 0,000004 – 0,000008 = 0,000068

– 0,63 – 0,01 – 0,02

Δ1 = 0 0,03 – 0,01 = – 0,001512 + 0,000191 + 0,001146 +

1,91 – 0,01 0,08

+ 0,000063 = – 0,000112

0,04 – 0,63 – 0,02

Δ2 = – 0,01 0 – 0,01 = – 0,000126 + 0,000382 + 0,000764 –

– 0,02 1,91 0,08

– 0,000504 = 0,000516

0,04 – 0,01 – 0,63

Δ3 = 0,01 0,03 0 = 0,002292 – 0,000063 – 0,000378 –

– 0,02 – 0,01 1,91

– 0,000191 = 0,00166

7. Определяем узловые напряжения

U1.1 = Δ1 / Δ = – 1,647 В

U2.2 = Δ2 / Δ = 7,588 В

U3.3 = Δ3 / Δ = 24,412 В

8. Используя II закон Кирхгофа, определяем токи в ветвях

ί1 = (E1 – U3) / R1 = (25,02 – 24,412) / 19,5 = 0,03 А

ί2 = (– E2 – U1 + U3) / R2 = (– 37,5 + 1,647 + 24,412) / 60 = – 0,19 А

ί3 = (U1 – U2) / R3 = (– 1,647 – 7,588) / 90 = – 0,1 А

ί4 = U1 / R4 = – 1,647 / 120 = – 0,01 А

ί5 = (– U3 + U2) / R5 = (– 24,412 + 7,588) / 165 = – 0,1 А

ί6 = U2/ R6 = 7,588 / 67,5 = 0,11 А

9. Проверка

ί5 + ί1 – ί2 = – 0,1 + 0,03+ 0,191 = 0,12

ί3 – ί6 – ί5 = – 0,1 – 0,11 + 0,11 = – 0,11

ί6 + ί4 – ί1 = 0,11 – 0,01 – 0,03 = 0,07

ί2 – ί3 – ί4 = – 0,19+ 0,1 + 0,01 = – 0,08

ЗАДАЧА 2Линейные электрические цепи синусоидального тока

В сеть переменного тока с действующим значением напряжения U включена цепь, состоящая из двух параллельных ветвей. Определить показания приборов, реактивную мощность цепи, коэффициент мощности и построить векторную диаграмму напряжений. Указать на схеме положительное направление токов в ветвях и обозначить эти токи.

Дано:

R1 = 8 Ом

R2 = 2 Ом

U = 127 В

јxc = 17 Ом

Решение:

1. Примем начальную фазу напряжения равной нулю

Ů = 127 е ј0 В

2. Определяем комплексное сопротивление

z 1 = R1 = 8 Ом

z2 = R2 – јxc = √2 2 + 17 2 · е – ј arctg 17/4 = 17,1 е – 77

3. По закону Ома определяем комплексные точки

İ 1 = Ů / z1 = 127 е ј0 / 8 = 15,9 е ј0 А

İ 2 = Ů / z2 = 127 е ј0 / 17,1 е – 77 = 7,4 е ј 77 =

= 7,4 · cos 77 + ј 7,4 · sin 77 = 1,7 + ј 7,2

4. Определяем полный комплексный ток

İ = İ 1 + İ 2 = 15,9 е ј0 + 7,4 е ј 77 = 15,9 cos 0 + ј 15,9 sin 0 +

+ 7,4 cos 77 + ј 7,4 sin 77 = 17,5 + ј 7,2 =

= √17,5 2 + 7,2 2 · е ј arctg 7,23/17,544 = 18,9 · е ј 22

А 18,9 А

А1 15,9 А

А2 7,4 А

5. Определяем полную мощность

S = İ · Ů = 18,9 е ј 22 · 127 е ј0 = 2410,5 е ј 22 =

= 2410,5 cos 22 + ј 2410,5 sin 22 = 2234,9 + ј 902,9

İ = 18,9 · еј 22 S = 2410,5 ВА

P = 2234,9 Вт Q = 902,9 ВАР

6. Определяем коэффициент мощности

cos φ = P / S = 0,93

ЗАДАЧА 3Линейные электрические цепи синусоидального тока

В цепь переменного тока с мгновенным значением напряжения

U = Umsin ωt промышленной частоты f = 50 Гц включены резистор и конденсатор. Определить показания приборов, реактивную и полную мощность цепи. Построить треугольник напряжений и векторную диаграмму напряжений.

Дано:

R = 2 Ом

Um = 282 В

xc = 17 Ом

Решение:

1. Определяем напряжение на зажимах цепи

U = Um/ √2 = 282 / 1,41 = 200 В

2. Определяем накопленное емкостное сопротивление

– јxc = – ј 17 = 17 е – ј 90

3. Определяем полное комплексное сопротивление цепи z

Z = R – јxc = 2 – ј 17 = √2 2 + 17 2 · е – ј arctg 17/2 = 17,1 е – ј 83

4. Начальную фазу напряжения примем равной нулю

Ů = 200е ј0 В

5. Определяем комплексный ток по закону Ома

İ = Ů / Z = 200 е ј0 / 17,1 е – ј 83 = 11,7 е ј 83

тогда показания амперметра IА = 11,7 А

6. Определяем комплексное напряжение на R

ŮR = I R = 11,7 еј 83 · 2 = 23,4 еј 83 =

= 23,4 cos 83 + ј 23,4 sin 83= 2,9 + ј23,2

7. Определяем напряжение на емкости

Ůc = İ (– ј xc) = 11,7 е ј 83 · 17 е – ј 90 = 198,6 е – ј 7 =

= 198,6 cos 7 – ј 198,6 sin 7 = 197,1 – ј 24,2

тогда показания вольтметра Uc = 198,6 В

8. Определяем полную комплексную мощность цепи

Ŝ = I* · Ů = 11,7 е -ј 83 · 200 е ј0 = 2336 е -ј 83 =

= 2336 cos 83 – ј 2336 sin 83 = 284,7 – ј 2318,6

S = 2336 ВА

P = 284,7Вт Q = 2318,6 ВАР

9. Определяем показатель фазометра

φ = φu – φί = 0 – 83 = – 83

тогда показания фазометра cos φ = cos (– 83) = 0,12

ЗАДАЧА 4Трехфазные электрические цепи синусоидального тока

В трехфазную сеть с линейным напряжением Uл (действующее значение напряжения) по схеме «треугольник/треугольник» включены активно-индуктивные приемники. Определить фазные и линейные токи в нагрузке, активную мощность всей цепи и каждой фазы отдельно.

Дано:

RАВ = 8 Ом Uл = 127 В XСА = 3 Ом RСА = 2 Ом

RВС = 3 Ом XАВ = 6 Ом XВC= 17 Ом

Решение:

1. Т. к. рассматриваем соединение «треугольник/треугольник», то

Uп = Uдо

ŮАВ = 127 е ј 0

ŮВС = 127 е – ј 120

ŮСА = 127 е ј 120

2. Определяем комплексное полное сопротивление фаз

zАВ = RАВ + ј xАВ = 8 + ј 6 = √82 + 62 · е ј arctg 6/8 = 10 е ј37

zВC = RВC + ј xВC= 3 + ј 17 = √32 + 172 · е ј arctg 17/3 = 17,3 е ј80

zCА = RСА + ј xСА = 2 + ј 3 = √22 + 32 · е ј arctg 3/2 = 3,6 е ј56

3. Определяем комплексные фазные токи

Iф = Uф / zф

İАВ = 127 е ј 0 / 10 е ј37 = 12,7 е -ј37

İВС = 127 е -ј 120 / 17,3 е ј80 = 7,3 е -ј200

İСА = 127 е ј 120 / 3,6 е ј56 = 35,3 е ј64

4. Определим сопряженные комплексные токи фаз:

İАВ* = 12,7 е ј37

İВС* = 7,3 е ј200

İСА* =35,3е -ј64

5. Определяем комплексные полные мощности фаз

S = IФ* · UФ

SАВ = 12,7 е ј37 · 127 е ј 0 = 1612,9 е ј37 = 1612,9 cos 37 + ј 1612,9 sin 37 = 1288,1 + ј 970,7

SВC = 7,3 е ј200 · 127 е – ј 120 = 927,1 е -ј80 =

= 927,1 cos 80 – ј 927,1 sin80 = 161 – ј 913

SCА = 35,3 е -ј64 · 127 е ј 120 = 4483,1 е ј56 = 4483,1 cos56 + ј 4483,1 sin56 =

= 2506,9 + ј 3716,7

6. Определяем активную мощность фаз

PАВ = 1288,1 Вт

PВC = 161 Вт

PCА = 2506,9 Вт

7. Определяем активную мощность цепи

Pц = PАВ + PВC + PCА = 3956 Вт


СПИСОК ЛИТЕРАТУРЫ

1. Касаткин А. С., М. В. Немцов «Электротехника»: М., Академия, 2005.

2. Методические указания к выполнению контрольной работы по дисциплине «Общая электротехника и электроника» для студентов заочной формы обучения.

3. Лачин В.И., Н.С. Савёлов «Электроника»: М., Феникс, 2002.

4. Лекции по дисциплине «Общая электротехника и электроника».