Смекни!
smekni.com

Линейные электрические цепи (стр. 1 из 2)

Министерство образования Российской Федерации

Государственное образовательное учреждение

высшего профессионального образования

Череповецкий Государственный Университет

Кафедра Электропривода и электротехники

Курсовая работа

по дисциплине «Электротехника и электроника»

Выполнил студент

группы 5 ЭН – 22

Малинин М.С.

Проверил доцент

Кудрявцева А.К.

г. Череповец

2007 г


СОДЕРЖАНИЕ

ВВЕДЕНИЕ. 3

ОСНОВНАЯ ЧАСТЬ. 6

ЗАДАЧА 1. 6

Метод контурных токов. 7

Метод узловых потенциалов. 9

ЗАДАЧА 2. 11

ЗАДАЧА 3. 13

ЗАДАЧА 4. 15

СПИСОК ЛИТЕРАТУРЫ.. 17

ВВЕДЕНИЕ

Полупроводниковый диод, двухэлектродный электронный прибор на основе полупроводникового (ПП) кристалла. Понятие «Полупроводниковый диод» объединяет различные приборы с разными принципами действия, имеющие разнообразное назначение.

В полупроводниковых диодах используется свойство p-n перехода, а также других электрических переходов, а также других электрических переходов хорошо проводить электрический ток в одном направлении и плохо – в противоположном. Эти токи и соответствующие им напряжения между выводами диода называются прямым и обратным токами, прямым и обратным напряжениями.

По способу изготовления различают сплавные диоды, диоды с диффузионной базой и точечные диоды. В диодах двух первых типов переход получается методами сплавления пластин p- и n-типов или диффузии в исходную полупроводниковую пластину примесных атомов. При этом p-n-переход создается на значительной площади (до 1000 мм2). В точечных диодах площадь перехода меньше 0,1 мм2. они применяются главным образом в аппаратуре сверхвысоких частот при значении прямого тока 10 – 20 мА.

По функциональному назначению полупроводниковые диоды делятся на выпрямительные, импульсные, стабилитроны, фотодиоды, светоизлучающие диоды и т.д.

Выпрямительные диоды предназначены для преобразования переменного тока и выполняются по сплавной или диффузионной технологии. Прямой ток диода направлен от анодного А к катодному К выводу. Нагрузочную способность выпрямительного диода определяют: допустимый прямой ток Iпр и соответствующее ему прямое напряжение Uпр, допустимое обратное напряжение Uобр и соответствующий ему обратный ток Iобр, допустимая мощность рассеяния Pрас и допустимая температура окружающей среды (до 50 0С для германиевых и до 140 0С для кремниевых диодов).

Вследствие большой площади p-n-перехода допустимая мощность рассеяния выпрямительных диодов малой мощности с естественным охлаждением достигает 1 Вт при значениях прямого тока до 1 А. Такие диоды часто применяются в цепях автоматики и в приборостроении. У выпрямительных диодов большой мощности с радиаторами и искусственным охлаждением (воздушным или водяным) допустимая мощность рассеяния достигает 10 кВт при значениях допустимых прямого тока до 1000 А и обратного напряжения до 1500 В.

Импульсные диоды предназначены для работы в цепях формирования импульсов напряжения и тока.

Стабилитроны, называемые также опорными диодами, предназначены для стабилизации напряжения. В этих диодах используется явление неразрушающего электрического пробоя (лавинного пробоя) p-n-перехода при определенных значениях обратного напряжения Uобр = Uпроб.

Следует отметить основные причины отличия характеристик реальных диодов от идеализированных. Обратимся к прямой ветви вольт-амперной характеристики диода (u > 0, ί > 0). Она отличается от идеализированной из-за того, что в реальном случае на нее влияют:

· сопротивления слоев полупроводника (особенно базы);

· сопротивления контактов металл-полупроводник.

Важно, что сопротивление базы может существенно зависеть от уровня инжекции (уровень инжекции показывает, как соотносится концентрация инжектированных неосновных носителей в базе на границе перехода с концентрацией основных носителей в базе). Влияние указанных сопротивлений приводит к тому, что напряжение на реальном диоде при заданном токе несколько больше (обычно на доли вольта).

Обратимся к обратной ветви (u < 0, ί < 0). Основные причины того, что реально обратный ток обычно на несколько порядков больше теплового тока ίs, следующие:

· термогенерация носителей непосредственно в области p-n-перехода;

· поверхностные утечки.

Термогенерация в области p-n-перехода оказывает существенное влияние на ток потому, что область перехода обеднена подвижными носителями заряда, и процесс рекомбинации (обратный процессу генерации и в определенном смысле уравновешивающий его) здесь замедлен.

ОСНОВНАЯ ЧАСТЬ

ЗАДАЧА 1Линейные электрические цепи постоянного тока

Для электрической схемы выполнить следующее:

· Упростить схему, заменив последовательно и параллельно соединенные резисторы четвертой и шестой ветвей эквивалентными, а источники тока преобразовать в источники напряжения. Дальнейший расчет вести для упрощенной схемы.

· Указать на схеме положительное направление токов в ветвях и обозначить эти токи.

· Определить токи во всех ветвях схемы методом контурных токов.

· Определить токи во всех ветвях схемы методом узловых потенциалов.

Метод контурных токов

Дано:


R1 = 19,5 Ом E1 = 25,8 В

R2 = 60 Ом E2 = 37,5 В

R3 = 90 Ом E3 = 0 В

R4.1 = 150 Ом I1 = 0,04 А

R4.2 = 600 Ом I2 = 0 А

R5 = 165 Ом I3 = 0 А

R6.1 = 40 Ом R6.2 = 27,5 Ом

Решение:

1. Находим в схеме элементы, соединенные параллельно или последовательно, и заменяем их эквивалентными

R4 = R4.1· R4.2 / (R4.1 + R4.2 ) = 150 · 600 / (150 + 600) = 120 Ом

R6 = R6.1 + R6.2 = 40 + 27,5 = 67,5 Ом

2. Определяем ЭДС

E1’= I1 · R1 =0,04 · 19,5 = 0,78 В

E2’= I2· R2 = 0 · 60 = 0 В

E1*= E1–E1’= 25,8 – 0,78 = 25,02 В

E2*= E2’– E2= 37,5 – 0 = 37,5 В

3. Составляем систему уравнений

I1.1 · (R1 + R5 + R6) – I2.2 · R5 – I3.3 · R6 = E1

I1.1 · R5 + I2.2 · (R2 + R3 + R5) – I3.3 · R3 = – E2

6 – I2.2 · R3 + I3.3 · (R3 + R4 + R6) = 0

Переписываем систему уравнений с числовыми коэффициентами

I1.1 · (19,5 + 165 + 67,5) – I2.2 · 165– I3.3 · 67,5 = 25,02

– I1.1 · 165+ I2.2 · (60 + 90 + 165) – I3.3 · 90= 37,5

I1.1 · 67,5– I2.2 · 90+ I3.3 · (90 + 120+ 67,5) = 0

252 I1.1 – 165 I2.2 – 67,5 I3.3 = 25,02

– 165 I1.1 + 315 I2.2 – 90 I3.3 = 37,5

– 67,5 I1.1 – 90 I2.2 + 277,5 I3.3 = 0

4. Считаем определители системы

252 – 165 – 67,5

Δ = – 165 315 – 90 = 22 027 950 – 1 002 375 – 1 002 375 –

– 67,5 – 90 277,5

– 1 435 218,75 – 2 041 200 – 7 554 937,5 = 8 991 843,75

25,02 – 165 – 67,5

Δ1 = 37,5 315 – 90 = 2 187 060,75 + 2 278 812,5 +

0 – 90 277,5

+ 797 343,75 – 202 662 + 1 717 031,25 = 4 726 586,25

252 25,02 – 67,5

Δ2 = – 165 37,5 – 90 = 2 622 375 + 151 996,5 –

– 67,5 0 277,5

– 170 859,375 + 1 145 603,25 = 3 749 115,375

252 – 165 25,02

Δ3 = – 165 315 37,5 = 371 547 + 417 656,25 + 531 987,75 +

– 67,5 – 90 0

+ 850 500 = 2 171 691

5. Определяем контурные токи

I1.1 = Δ1 / Δ = 0,526

I2.2 = Δ2 / Δ = 0,417

I3.3 = Δ3 / Δ = 0,242

6. Используя II закон Кирхгофа, определяем токи в цепях

ί1 = I1.1 = 0,526 А ί4 = I3.3 = 0,242 А

ί2 = I2.2 = 0,417 А ί5 = I2.2 – I1.1 = – 0,109 А

ί3 = I2.2 – I3.3 = 0,175 А ί6 = I1.1 – I3.3 = 0,284 А

7. Проверка

ί5 + ί1 – ί2 = – 0,109 + 0,526 – 0,417 = 0

ί3 – ί6 – ί5 = 0,175 – 0,284 + 0,109 = 0

ί6 + ί4 – ί1 = 0,284 + 0,242 – 0,526 = 0

ί2 – ί3 – ί4 = 0,417 – 0,175 – 0,242 = 0

Метод узловых потенциалов

Дано:


R1 = 19,5 Ом E1 = 25,8 В

R2 = 60 Ом E2 = 37,5 В

R3 = 90 Ом E3 = 0 В

R4.1 = 150 Ом I1 = 0,04 А

R4.2 = 600 Ом I2 = 0 А

R5 = 165 Ом I3 = 0 А

R6.1 = 40 Ом R6.2 = 27,5 Ом

Решение:

1. Определяем собственную проводимость узла, которая равна сумме проводимостей, сходящихся в узле

g1 = 1 / R1 = 0,05 g4 = 1 / R4 = 0,01

g2 = 1 / R2 = 0,02 g5 = 1 / R5 = 0,01

g3 = 1 / R3 = 0,01 g6 = 1 / R6 = 0,01

2. Определяем взаимную проводимость в узле, которая равна проводимости ветви, соединяющей два узла

g1.1 = g4 + g2 + g3 = 0,04 g1.2 = g2.1 = g3 = 0,01

g2.2 = g3 + g5 + g6 = 0,03 g2.3 = g3.2 = g5 = 0,01

g3.3 = g1 + g2 + g5 = 0,08 g1.3 = g3.1 = g2 = 0,02

3. Определяем сумму токов от источников, которые находятся в ветвях, сходящихся в данном узле

I1.1 = – E2 / R2 = – 37,5 / 60 = – 0,625

I2.2 = 0

I3.3 = E1 / R1+ E2 / R2 = 25,02 / 19,5 + 37,5 / 60 = 1,905

4. Записываем в общем виде систему уравнений

u1 · g1.1 – u2 · g1.2 – u3 · g1.3 = I1.1

– u1 · g2.1 + u2 · g2.2 – u3 · g2.3 = I2.2

– u1 · g3.1 – u2 · g3.2 + u3 · g3.3 = I3.3

5. Переписываем систему уравнений с числовыми коэффициентами

0,04 u1 – 0,01 u2 – 0,02 u3 = – 0,63

– 0,01 u1 + 0,03 u2 – 0,01 u3 = 0

– 0,02 u1 – 0,01 u2 + 0,08 u3 = 1,91

6. Считаем определители системы

0,04 – 0,01 – 0,02