Сочетания механических нагрузок в разных режимах работы ВЛ:
нормальный режим - основные сочетания;
монтажный режим - дополнительные сочетания;
аварийный режим - особые сочетания.
Предварительно, из справочников [2, 5],выписываются основные физико-механические и конструктивные данные заданной марки провода.
В результате механического расчета проводов и тросов определяются механические нагрузки, действующие на провода и тросы, внутренние напряжения, возникающие в них при самых неблагоприятных сочетаниях климатических условий, а также находятся длина пролета Lгаб и наибольшая стрела провеса провода fгаб..
Расчет всех этих величин выполняется на ЭВМ. Программа механического расчета проводов и тросов разработана на кафедре «Электрические системы».
Рассматриваемая линия проходит по Западной Сибири, пользуясь картами районирования России по скоростным напорам ветра и толщине стенки гололеда определяем, что данная местность имеет I район по гололеду и II по ветровой нагрузке. Максимальная температура воздуха +43°С, минимальная -37°С, , температура гололеда -5°С, эксплуатационная +3°С.
С учётом уровня напряжения проектируемой линии находим нормативную толщину стенки гололеда с = 10 мм.
В качестве опор выбираем промежуточную ПБ – 1 – 3 и анкерную У2.
Расчет провода 3*АС-300/66.
Исходные данные:
Фактическое сечение провода – 353,8 мм2
Диаметр провода – 24,5 мм
Масса провода – 1313 кг/км
Температурный коэффициент линейного удлинения – 18,3×10-6 град-1
Модуль упругости – 8,9×103 даН/(м2)
Скоростной напор – 71,5 даН/(м2)
Толщина стенки гололеда – 10 мм
Допускаемые напряжения при макс нагрузке – 14,9 даН/(м2)
Допускаемые напряжения при среднегодовой температуре – 9,9 даН/(м2)
Исходные данные вводятся в файл id.dat. Далее запускаем файл Airline.exe, результаты расчета находятся в файле rez.dat, а также в файле line_7.mcd находятся графики изменения напряжения и стрел провеса от длины пролета для различных режимов работы ЛЭП.
Результаты расчета провода (rez.dat) находится в приложении 12.
Графики изменения напряжения и стрел провеса от длины пролета для различных режимов работы ЛЭП:
Рис. 6.1 Графики изменения напряжения провода от длины пролета для различных режимов работы ЛЭП
Рис. 6.2 Графики изменения стрел провеса провода от длины пролета для различных режимов работы ЛЭП
Расчет троса С-70.
Исходные данные:
Фактическое сечение провода – 76,4 мм2
Диаметр провода – 11,2 мм
Масса провода – 617 кг/км
Температурный коэффициент линейного удлинения – 12×10-6 град-1
Модуль упругости – 20×103 даН/(м2)
Скоростной напор – 75,3 даН/(м2)
Толщина стенки гололеда – 10 мм
Допускаемые напряжения при макс нагрузке – 31 даН/(м2)
Допускаемые напряжения при среднегодовой температуре – 21,6 даН/(м2)
Результаты расчета троса (rez.dat)находится в приложении 12
Графики изменения напряжения и стрел провеса от длины пролета для различных режимов работы ЛЭП:
Рис. 6.3 Графики изменения напряжения троса от длины пролета для различных режимов работы ЛЭП
рис. 6.4 Графики изменения стрел провеса троса от длины пролета для различных режимов работы ЛЭП
Выводы: в данной главе по справочной литературе подготовили исходные данные для программы механического расчета проводов и тросов, затем произвели расчет провода АС-300/66 и провода С-70. В результате расчета получили удельные нагрузки, критические температуры и критические пролеты, а также построены графики изменения напряжения и стрел провеса от длины пролета для различных режимов работы ЛЭП.
Сопоставляя три заданные величины : наибольшая мощность, передаваемая от ГЭС Р0=1020 МВт; наибольшая мощность потребителей промежуточной подстанции Рп/ст = 520 МВт; оперативный резерв мощности, имеющийся в приём-ной системе Ррезерв = 320 МВт и учитывая, что электропередача располагается а Западной Сибири, спроектировали линию электропередачи напряжением 500 кВ. Произвели расчет основных режимов работы электропередачи. Для нормальной работы передачи требуются установка 9 групп реакторов 9x3xРОДЦ-60/500 и двух синхронных компенсаторов типа КСВБ0-50-11. Так же выполнено проектирование развития районной электрической сети: добавлены один пункт потребления и еще один источник питания; была определена потребная району мощность, которая составила 139 МВт, составлен баланс активной и реактивной мощности; для двух выбранных вариантов развития сети произвели выбор (проверку) сечений проводов и трансформаторов; в результате технико-экономического сравнения рассчитали для вариантов приведенные затраты, которые составили З1 = 541 тыс. руб. и З2 = 589 тыс. руб. и для расчетов параметров основных режимов работы сети выбрали вариант 1; по результатам расчета режимов на ЭВМ выполнили регулирование напряжения у потребителей. Себестоимость передачи электроэнергии по линии 500 кВ составляет 0,146 коп за 1 кВт·ч. Себестоимость передачи электроэнергии по районной электрической сети 0,084 коп за 1 кВт·ч. Таким образом, спроектированная электропередача удовлетворяет условиям надежного снабжения электроэнергией потребителей и является достаточно экономичной. Кроме того, выполнен обзор научно-технической литературы, в котором рассмотрены вопросы о повышении надежности работы ВЛ при воздействии атмосферных нагрузок. Так же в разделе по безопасности и экологичности приведена техника безопасности при профилактических испытаниях изоляции.
1. Методические указания по расчету климатических нагрузок на ВЛ и построению региональных карт с повторяемостью 1 раз в 25 лет. Утверждены Минэнерго СССР 30/XI 1990 г.
2. Справочник по проектированию электроэнергетических систем под редакцией С. С. Рокотяна и И. М. Шапиро.-М.: Энергоатомиздат 1985 г.-350с.
3. Неклепаев В.Н., Крючков И.П. Электрическая часть электростанций и подстанций. Справочные материалы для курсового и дипломного проектирования -М.: Энергоатомиздат,1989 г.-605с.
4. Правила устройства электроустановок. Седьмое издание. – М.: ЭАО “Энергосервис”, 2003. – 421с.
5. Справочник по электрическим установкам высокого напряжения/ под ред. И. А. Баумштейна, С. А. Бажанова. – 3-е изд., перераб. и доп. – М.: Энергоатомиздат, 1986. – 648 с.: ил.
6. Неклепаев В.Н., Крючков И.П. Н. Н. Кувшинский Электрическая часть электростанций и подстанций. Справочные материалы для курсового и дипломного проектирования -М.: «Энергия», 1978 г.-455с.
7. О повышении надежности ВЛ при воздействии атмосферных нагрузок. / Никифоров Е. П. // Электрические станции. 2004, №2. -С.38-42.
8. Повышение эффективности удаления гололедообразований с проводов ВЛ. / Никифоров Е. П. // Электрические станции. 2004, №4. -С.40-48.
9. Андриевский В. Н. и др. Эксплуатация воздушных линий электропередачи. Изд. 3-е перераб. и доп. М., «Энергия», 1986. – 616 с.
10. Межотраслевые правила по охране труда (правила безопасности) при эксплуатации электроустановок. – М.: Изд-во НЦ ЭНАС, 2001. – 216 с.
11. Правила применения и испытания средств защиты, используемых в электроустановках. Изд. 10-е. . – М.: Изд-во НЦ ЭНАС, 2002. – 95 с.
Таблица П 1.1.
Время нагрева провода, сек
Ток, А | Время нагрева провода до tn = 2°С, при ветре скоростью | ||
2м/с | 5м/с | 10 м/с | |
249 | ∞ | ∞ | ∞ |
313 | 403 | ∞ | ∞ |
316 | 378 | ∞ | ∞ |
325 | 318 | 14342 | ∞ |
330 | 292 | 2844 | ∞ |
370 | 171 | 361 | ∞ |
400 | 127 | 210 | 744 |
500 | 64 | 80 | 110 |
Таблица П1.2.
Температура провода
Ток, А | Температура провода в установившемся режиме, °С, при ветре скоростью | ||
2м/с | 5м/с | 10м/с | |
249 | 1,3 | -0,9 | -2,1 |
313 | 5,1 | 1,6 | -0,3 |
316 | 5,3 | 1,7 | -0,2 |
325 | 6,0 | 2,1 | 0,1 |
330 | 6,3 | 2,3 | 0,3 |
370 | 9,2 | 4,3 | 1,7 |
400 | 11,6 | 5,8 | 2,8 |
500 | 20,3 | 11,7 | 7,1 |
Таблица П1.3.
Затраты мощности, времени и расход электроэнергии на удаление гололеда на проводе АС 120/19 при V= 5 м/с, t, = -5°С
Способ | Ток, А | Необходимая активная мощность на 1 км провода, кВт/км | Затраты времени на нагрев провода и плавление гололеда | Затраты электроэнергии на удаление гололеда на 1 км провода, кВт-ч/км |
Предупредительый нагрев провода ВЛ | 400 500 | 36 56 | Нагрев провода 3 мин,предотвращение гололедообразования около 24 ч | |
Удаление гололеда цилиндрической формы с толщиной стенки Ь = 1 см | 665561523503 | 10071 6257 | 2,2 мин + 15 мин5,4 мин + 30 мин 9,75 мин + 45 мин16,5 мин + 60 мин | 28,641,9 56,5772,7 |
Удаление одностороннего гололеда | 50006000 70008000 | 56758172 1112314528 | 0,3 с + 2,39 с0,21 с +1,65 с 0,15 с +1,24 с0,12 с + 0,93 с | 4,244,22 4,294,24 |
ПРИЛОЖЕНИЕ 2
Рис. П2.1. Схема электрических соединений для первого варианта электропередачи