Смекни!
smekni.com

Магнитные наносистемы (стр. 3 из 6)

В последнее десятилетие развитие экспериментальных методов получения и изучения свойств нанокластеров и наноструктур привело к значительному прогрессу в этой области и созданию направления исследования физикохимии нанокластеров и нанокластерных систем.

Для синтеза нанокластеров и наноструктур применялись как традиционные методы химии твердого тела и твердотельные химические реакции, так и специальные методы матричного наноструктурирования с образованием кластеров в микропорах с помощью химических реакций. Методы второй группы позволяют переходить от изолированных (матричная изоляция) к взаимодействующим кластерам. В круг вопросов изучения нанокластеров и наносистем входили атомная нанокластерная динамика, магнитные свойства и магнитные фазовые переходы, каталитические свойства. При этом использовались теоретические методы: термодинамический подход к описанию магнитных фазовых переходов в наносистемах, учитывающий поверхностную энергию кластеров и межкластерные взаимодействия, и математическая модель нуклеации, в ходе твердотельной реакции учитывающая термодинамические аспекты зародышеобразования и роста кластеров. Методическую базу экспериментальных исследований составляли метод рэлеевского рассеяния мессбауэровского излучения для характеристики динамических свойств наносистем, методы мессбауэровской спектроскопии для определения размера кластера, методы мессбауэровской спектроскопии для исследования магнитных фазовых переходов и определения критических размеров кластеров, при которых происходит скачкообразное изменение магнитных свойств кластера, метод зонда для исследования ограниченной диффузии кластера в поре, позволяющий оценить потенциалы движения кластера, методы каталитического тестирования (на основе определения активности и селективности катализатора) свойств поверхности и объема нанометрических слоистых оксидов допированных ионами переходных металлов. В качестве объектов синтеза и исследования были выбраны нанокластеры и наносистемы на основе оксидов железа, а также полимерные нанокластерные системы, которые интересны не только в плане изучения и моделирования новых свойств, связанных с размерными эффектами и межкластерными взаимодействиями, но, что крайне важно, перспективны для создания новых магнитных материалов и катализаторов[2].

4.1 Формирование нанокластерной системы оксидов железа. Термодинамическая модель зарождения и роста кластеров

Эффективный метод синтеза наносистем из твердотельных железооксидных кластеров основан на термическом разложении оксалата железа. Процесс разложения при температуре выше некоторой критической точки начинается с формирования активной реакционной среды, в которой происходит зарождение нанокластеров оксида железа. Этот процесс формирования кластеров можно сравнить с процессом образования зародышей в растворе или расплаве, заполняющем ограниченный объем. Ограничение имеет место, когда кластер образуется в замкнутой поре конечного объема или в результате диффузионного ограничения, которое не позволяет возмущению концентрации маточной среды, вызванному изменением размера кластера, продвинуться за время нуклеации

дальше, чем на расстояние
? где D – коэффициент диффузии. Именно это расстояние определяет размер окружающей кластер ячейки, за пределы которой компоненты маточной среды во время нуклеации проникнуть не могут. Для одного кластера в системе неконтактирующих наночастиц зависимость свободной энергии
Гиббса от радиуса кластера описывается формулой

(1)

где

- плотность поверхностной энергии кластера,
- плотность вещества в кластере,
- изменение химического потенциала при переходе одного нуклеирующего атома железа из маточной среды в кластер. Если кластер и окружающая среда содержат всего N атомов, из которых
- атомы железа и из них n атомов входит в состав кластера, то при

(2)

где

- измеренное в единицах kТ изменение стандартного химического потенциала при переходе одного атома железа из среды в структуру кластера.

При зарождении кластер не контактирует с другими кластерами. Запишем выражения для площади поверхности и объема изолированного кластера

и
, тогда уравнение (1) с учетом (2) можно представить следующим образом:

(3)

Функция

имеет максимум в точке
(
- критический радиус зародышей при нуклеации), и минимум в точке
.

Выражение (3) характеризует зарождение и рост кластера в системе неконтактирующих наночастиц.

Дальнейший рост кластеров приводит к образованию контактов и спеканию системы. Если на этой стадии расстояние между центрами кластеров равно, то выражения для площади поверхности и объема кластера в контакте можно записать так:

где к – число контактирующих с кластером соседей.

Изменение свободной энергии Гиббса на стадии спекания составляет:

(4)

Для примера на рис.1 представлена зависимость

для
. Первый минимум в точке
соответствует исходному состоянию маточной среды. Второй минимум в точке
отвечает первому устойчивому состоянию – равновесному состоянию образовавшихся, но не контактирующих кластеров. Третий минимум соответствует системе кластеров имеющих к контактирующих соседних частиц, подвергаемых спеканию при условии
. Соответственно первый максимум при
представляет

собой потенциальный барьер нуклеации, второй - потенциальный барьер стадии спекания.

Рис.(2) демонстрирует вид потенциального барьера процесса спекания для к =6 и различных значений

. В плотно заселенной кластерами системе, при
, спекание

происходит без барьера. В менее плотно заселенной системе, при

, процесс перехода к спеканию осуществляется через потенциальный барьер, а в еще менее плотно заселенной системе, при
, спекание вообще не происходит.

На кривых дифференциального термического анализа и дифференциальной термической гравиметрии для процесса термического разложения оксалата железа

на воздухе обнаруживаются два минимума: при
и при
. При
выделяются
,
,
и начинает формироваться подвижная среда, в которой зарождаются и растут кластеры оксида железа. Второй минимум при
, по-видимому связан с дальнейшим удалением из оксалата
и
, и началом спекания кластеров оксида железа.