Смекни!
smekni.com

Магнитные свойства атомов (стр. 4 из 5)

dx = L cosα

FX = m0 L dH / dx Cosα,

μ = m0L – магнитный момент диполя.

FX = μ dH / dx Cosα (30)

В зависимости от ориентации магнитного момента (угол α), диполь будет смещается вдоль оси ОХ (т.е. вдоль поля) либо в сторону увеличения напряженности магнитного поля.

Рис.5

Если атомы обладают магнитными моментами, которые могут произвольно ориентироваться относительно поля, то узкий первоначальный пучок атомов, летящий вдоль оси OY, пересекая неоднородное магнитное поле, направленное вдоль оси OX, растянется в широкую (в направлении поля) полосу, в соответствии с произвольными значениями cosα в пределах

-1

cosα
1.

Рис. 6

Если магнитные моменты атомов могут ориентироваться относительно направления поля только вполне определенным образом, т.е. cosα может принимать только вполне определенные дискретные значения, то в соответствии с этим первоначальный пучок должен расщепиться на ряд компонент. Как следует из вывода соотношения (30).

Опыты могут доказать не только существование магнитного момента у атома, но и проверить достоверность выводов теории пространственного квантования.

В откачанном до глубокого вакуума сосуде 1 помещена маленькая печь 2, в которой находится кусочек серебра 3. При нагревании печи серебро испаряется, атомы Ag вылетают из печи во всех возможных направлениях с тепловыми скоростями (~ несколько сотен м/с). Несколько щелей 4 выделяют узкий пучок атомов серебра, летящий вдоль оси Y. Атомный пучок пролетает через область неоднородного магнитного поля, направленного вдоль оси X. На пластине 5, пучок конденсируется на ней. Атомный пучок расщепляется, что подтверждает справедливость теории пространственного квантования, доказано наличие у атомов магнитного момента.

Полный магнитный момент атома μJ = μ0gj*,

его проекция μJH = μ0gmJ,

где квантовое число mJ = j, j - 1, …, - j.

Отклоняющая сила

FX = μ0g (dH / dx) mJ

Все атомы серебра находятся в основном состоянии 2S4, орбитальным l = 0, спином S = ½, внутренним j = ½, множитель Ланде

g = 1 + (j (j + 1) + s (s + 1) - l (l + 1)) / 2j (j + 1)) = 2

Магнитное квантовое число mJ при j = ½ принимает только два значения i + ½ и – ½

Следовательно, возможны только две ориентации магнитного момента атома серебра в S - состоянии относительно поля H.

Со стороны поля H, согласно (31) будет действовать сила либо

1 = μ0 (
dx), либо
2 = - μ0 (
dx). Поэтому одни атомы смещаются в сторону возрастания поля, другие – в сторону уменьшения напряженности
, вследствие чего пучок расщепляется на две компоненты, что подтверждилось на опыте.

Поэтому в S - состоянии l=0, то μl = 0 (μl = (e /2mC)Pl), следовательно, магнитный момент атома серебра в основном состоянии обусловлен собственным магнитным моментом электрона, и было определено в 1952 г.

μSH = 1.00116 μ0,

а не μSH = 2μ0ms= μ0, что следует из релятивистского уравнения Шредингера, уравнения Дирака. Это получило специальное название – аномального магнитного электрона. Аномальный магнитный момент электрона обусловлен его взаимодействием с собственным электромагнитным полем.


Эффект Зеемана

Является убедительным экспериментальным доказательством существования магнитного атомного момента и его пространственного квантования.

Если свет от источника рассматривать в направлении перпендикулярном магнитному полю (вдоль оси У), то каждая линии расщеплена и состоит из трех компонентов:

ν0; ν0 + Δν; ν0 – Δν; где ν0 – частота линии в отсутствие магнитного поля;

Δν0 = eH / 4πmC;

H – напряженность внешнего магнитного поля.

Если свет рассматривать вдоль направления магнитного поля

(вдоль оси Х), то каждая расщепится только на две компоненты:

ν0 + Δν; ν0 – Δν.

В отсутствие магнитного поля атом находится в состоянии с энергией EY. Поместим его во внешнее поле

. Появляется связь
l -
s – магнитное взаимодействие и взаимодействие
l -
и
s -
. Если
слабое, то последнее взаимодействие сильное. Энергия атома в магнитном поле изменится за счет потенциальной энергии ΔΕΗ взаимодействия магнитного момента атома с магнитным полем и сделается равной EIH = EI + ΔΕΗ.

ΔΕΗ – потенциальная энергия взаимодействия магнитного момента атома

l с внешним магнитным полем равна

ΔΕΗ = μ0 g H MI

где MI – полное магнитное квантовое число при данном J имеет 2I + 1 значений, то есть MI = I, I – 1, I – 2, …- I. Таким образом, в слабом магнитном поле каждый энергетический уровень EI (каждый терм) атома расщепится на 2J + 1 подуровней с энергиями

EJH = EJ + μ0 g H MI.

Обычно, расщепление энергетических уровней атома в магнитном поле называют зеемановским расщеплением.

Энергетический уровень 2’Pl в магнитном поле расщепится на 3 подуровня. В 2’Pl состоянии L=1, S=0, I=0, то магнитное квантовое число MI принимает три значения –

Mτ = +1; 0; -1.

Множитель Ланде для 2’Pl:

g2 = 1 + (I (I + 1) + S (S + 1) - L (L + 1)) / 2I (I + 1))=1

В состоянии 2’Pl атом гелия в магнитном поле обладает энергетическими подуровнями:

E’2H = E2 + μ0H (M=1),

E’’2H = E2 (M=0),

E’’’2H = E2 - μ0H (M= - 1),

То есть уровень 2’Pl с энергией Ε2 в магнитном поле расщепится на три подуровня с энергиями E’2H, E’’2H, E’’’2H. Согласно правилам отбора ΔL =

1; ΔS = 0; ΔI = 0,
1; ΔMI = 0,
1 при переходе 2’Pl - 1’S0, в магнитном поле вместо одной линии λ0 будет излучаться три линии: λ1, λ2 = λ0, λ3.

Причем линии, для которых ΔMI = 0 (π - компоненты) согласно квантовой механике будут поляризованы линейно, то есть так, что электрический вектор расположен параллельно полю

.

Линии, для которых ΔMI =

1 (σ - компоненты), будут поляризованы так, что электрический вектор их волны расположен перпендикулярно полю
и будут обладать круговой поляризацией (по правому и левому кругу).

Частоты, соответствующие этим линиям:

νl = (E’2H – E1H) / h = ((E2 – E1) / h) + μ0H / h.

Но (E2 – E1) / h = ν0; μ0H / h = eH/(4πmC) = Δμ0

Учтя знак электрона, получим

νl = ν0 – eH / (4πmC) = νl - Δν0

Аналогичным образом ν2 = νl;

ν3 = νl + eH / (4πmC) = νl + Δν1


Элементы квантовой электроники

§1. Задачи квантовой электроники

В 50-х годах зародилась новая глава атомной физики, которая вскоре превратилась в самостоятельную область физики, получившая название квантовой электроники.

Основной задачей квантовой электроники является получение и усиление изучения с помощью квантовых систем, квантовых генераторов и усилителей, каковыми являются атомы, молекулы вещества в различных агрегатных состояниях (в газообразном, жидком, кристаллическом). В основе таких систем лежит индуцированное излучение.