Смекни!
smekni.com

Оптичні властивості некристалічних напівпровідникових халькогенідів (стр. 5 из 6)

Таким чином, на основі експериментальних результатів можна з достовірністю констатувати; що зворотні фотоіндуковані зміни оптичних констант безпосередньо пов'язані з процесами локалізації носіїв на рівнях захоплення при фотоіндукованих змінах і досить точно можуть бути описані співвідношенням:

Δ α/ α = (AMβFτ /QM)ּ{1-exp[-tῩּQM]} ,

де А - поперечний переріз захоплення кванта світла фотоіндукованим центром; М - концентрація пасток, що захоплюють носії заряду, β - квантовий вихід, α -коефіцієнт поглинання. F - інтенсивність лазерного випромінювання, τ - час життя носіїв заряду, що захоплюються на локальні центри, QM - ефективна густина станів в зоні, приведена до рівня пасток М , Ῡ- усереднений коефіцієнт захоплення, t - час (мал.13). Захоплення носіїв заряду призводить до деякого електричного впорядкування, що виявляється в зменшенні просторової флуктуації випадкового потенціалу.

Якщо температура, за якої відбуваються фотоіндуковані зміни фізико-хімічних параметрів, рівна або більша за температуру відновлення вихідних властивостей шарів, то відповідна складова оптичної пам'яті тут носитиме динамічний характер, тобто обумовлюватиме додаткове відносно постійної зміни оптичних констант при наявності збудження з енергією кванта порядку

ширини забороненої зони.

Стани локалізації, відповідальні за реверсивну оптичну пам'ять (участь центрів 0.4, 0.6-0.8 еВ для Аs-Sе і 0.66, 0.8 еВ для Аs-S у незворотній складовій мала), пов'язані з наявністю дефектів типу атомів з порушеною координацією. Локалізація носіїв на дефектних центрах може спричиняти деяке часткове впорядкування. Свідченням цього можуть бути дані зміщення частоти "бозонного" піка при засвічуванні. Мабуть, частота "бозонного" піка характеризує взаємодію шароподібних кластерів і пов'язана з віддаленістю їх один від одного. Захоплення носіїв на дефектні центри при засвічуванні упорядковує структуру в тому розумінні, що шароподібні кластери укладаються щільніше. В такому випадку зрозуміло і збільшення частоти "бозонного" піка, яке рівнозначне зменшенню міжкластерної відстані.

Поскільки у відпалених плівках халькогенідів не спостерігаються значні структурні зміни при лазерному опроміненні (про це свідчать результати дослідження ядерного квадрупольного резонансу), то при поясненні експериментальних результатів фотоіндукованих змін властивостей використовуватимемо електронний механізм фотоіндукованих змін. Згідно з цим механізмом фотоіндуковані зміни обумовлюються процесами локалізації носіїв на дефектних рівнях, що знаходяться в забороненій зоні. Такі стани локалізації носіїв заряду мають місце як в тонких шарах, так і монолітних зразках халькогенідів і пов'язані із "заморожуванням" при охолодженні розплаву координаційних дефектів типу D+, D-. При освітленні халькогеніду світлом з області краю фундаментального поглинання генеруються вільні носії. Частина із них рекомбінує, частина локалізується на відповідних центрах і залишається там доти, поки їх термічна енергія не стане достатньою для подолання бар'єру і переходу у відповідну зону. Локалізація носіїв на дефектних центрах може викликати деяке часткове впорядкування структури скла. Свідченням цього можуть бути дані досліджень низькочастотної області спектра комбінаційного розсіювання світла. Для пояснення даного ефекту можна взяти модель, засновану на флуктуаціях потенціалу. Флуктуації потенціалу можуть виникати як за рахунок локальних змін густини і складу, що спричинює пружні флуктуації забороненої зони (несиметричні флуктуації), так і в зв'язку з флуктуаціями густини електронних зарядів, тобто "ізоелектричнi" (симетричні) флуктуації. Флуктуації густини і складу, як свідчать результати вимірювання малокутового рентгенівського розсіювання і дані фотоемісійних досліджень при фотоіндукованих змінах, малі і навряд чи можуть призвести до спостережуваного зсуву краю пропускання та його експоненціальної залежності від енергії фотонів. Крім того, симетричні флуктуації можуть бути змодельовані за допомогою заряджених центрів типу D+, D- і т.д.

Останні, можливо, "заморожуються" при температурах, нижчих за температуру склування, і набувають характеру потенціальних флуктуацій, подібно до зображеного на мал.14.

В процесі оптичної генерації вільці носії надалі локалізуються в "ямах" флуктуацій густини станів зони. Припинення освітленості не викликає значне зменшення концентрації захоплених носіїв, оскільки, з одного боку, вони просторово розділені, і ймовірність рекомбінації дуже мала; з іншого боку,-делокалізація не відбувається у зв'язку із значним енергетичним бар'єром (за підрахунками, порядку 0.7-0.8еВ для стекол на основі селеніду миш'яку), що відділяє їх від відповідних зон.

У результаті одержуємо, що локалізація носіїв у певних місцях флуктуаційних потенціалів призводить ніби до згладжування рельєфу таких флуктуацій, дещо зменшує ефективну оптичну зону (на мал.14 це помічено пунктиром). Прогрівання експонованого зразка до температур стирання обумовлює делокалізацію захоплених носіїв заряду. Останні, маючи достатню для подолання бартеру енергію, переходять в зони і потім рекомбінують по одному із можливих каналів. Далі, після стирання оптичного запису, відповідний електростатичний рельєф знову заморожується, обумовлюючи збільшення енергії оптичних міжзонних переходів.

Виходячи з викладеного, можна константувати, що при підсвічуванні відпаленого шару локалізація носіїв в екстремумах флуктуаційного електростатичного потенціалу, що обумовлює існування рівнів у забороненій зоні, викликає експериментальне спостереження змін оптичних і фотоелектричних властивостей. Структурні зміни, наприклад, перемикання або обрив зв'язків, у реверсивних циклах, мабуть, не відбуваються, про що свідчать експериментальні дані по КРС. Можливо, деяке локальне упорядкування структурної сітки поблизу дефектів з локалізованими на них носіями заряду проявляється слабою зміною довжин і кутів валентних зв'язків.

На мал.14 зображено розподіл густини локалізованих станів у забороненій зоні халькогеніду. Розглянемо їх участь в елекгронно-діркових процесах при вимірюванні фотопровідності, дрейфу нерівноважних носіїв, індукованого поглинання і характер впливу на них засвічування. Вважатимемо, що в температурному інтервалі вимірювань провідність здійснюється дірками по делокалізованих станах, тобто нижче Еv. .Значення активаційної енергії темнової провідності визначає енергетичну відстань Е2 станів, локалізованих поблизу Еf відносно Еv. При цьому не виключається участь інших, більш мілких рівнів Е1f, як це має місце в стеклах Аs2S3. Фотопровідність досліджених хальхогенідів носить активаційний характер з енергією Еф≈ 0.З еВ. Вона пов'язна з характеристичною глибиною локалізованого на краю валентної зони "хвоста" густини станів. У забороненій зоні бінарних халькогенідів типу Аs-S і сполук на їх основі є стани, розміщені на 0.4, 0.6 і 0,7-0,8 еВ від стелі валентної зони. Наявність таких рівнів підтверджується дослідженням термостимульованих струмів, дрейфової рухливості. Засвічування шару халькогеніду при Ткімн.згідно з даною моделлю призводить до локалізації носіїв заряду на глибоких рівнях з Е1=0.7-0,8 еВ. У такому випадку це повинно відобразитися в експериментах, які "зондують" ці рівні.

Зміну ступеня заповнення рівнів виявлено при дослідженні форми імпульсу перехідного струму, зокрема його післяпрольотної (t>tпр.) частини, безпосередньо пов'язаної з взаємодією дрейфуючого пакета з глибокими рівнями. Стани, що обумовлюють компоненту з Тстир. = 220 К, проявляються в експериментах за термостимульованим спорожненням пасток (Еt=0.4 еВ), попередньо заповнених в умовах збудження, аналогічних реалізації оптичного запису.

В результаті засвічування шарів халькогеніду зменшується енергетичний інтервал ∆Еv(∆Еc), заповнений cтанами, локалізованими в "хвостах" зон. Підтвердженням цьому є зменшення "оптичної" забороненої зони, а також активаційної енергії фотопровідності і глибини залягання рівня на ∆Еv. Розглядувані рівні є центрами захоплення дірок, поскільки в експериментах по дрейфу спостерігається сигнал перехідного струму лише при плюсевій (позитивній) полярності верхнього електрода.

Таким чином, можна вважати, що ініціюючим механізмом процесу, фотоіндукованих зворотних змін властивостей халькогенідних склоподібних напівпровідників є локалізація носіїв заряду на дефектних центрах відповідної глибини залягання.

РОЗДІЛ 3

КОНЦЕНТРАЦІЙНІ ЗАЛЕЖНОСТІ ОПТИЧНИХ ВЛАСТИВОСТЕЙ МОДИФІКОВАНИХ СТРУКТУР ТИПУ <Ge40S60 :X> (X-Te,Bi,Pb)

Відомо, що введення елементів, хімічно відмінних від атомів матриці, змінює фізичні властивості халькогенідних склоподібних напівпровідників (ХСН). Ця зміна спостерігається як при введені домішок в розплав під час синтезу скла, так і при сумісному напилені ХСН і хімічного елементу. Завдяки цьому активно розвивається новий підхід до керування властивостями напівпровідників, що базується на формуванні в напівпровідниковій матриці нанорозмірних атомних утворень, в склад яких можуть входити атоми введених домішок, атоми власних компонентів, а також власні точкові дефекти матриці скла Такі новоутворення викликають зміну енергетичного стану в забороненій зоні при збереженні незмінним фазового стану основної речовини. Тому пошук модифікуючих елементів для створення неоднорідних структур на основі склоподібних халькогенідів, здатних помітно впливати на властивості досліджуваних структур, є актуальною задачею. Викладемо результати досліджень оптичних властивостей градієнтних плівок на основі матриці Ge40S60 з Те, Bi, Pb і їх зміну зі зміною концентрації модифікатора. Вимірювання виконані в інтервалі концентрацій хімічних елементів 0 ÷15 ат.%.