Смекни!
smekni.com

Основы аэронавтики (стр. 3 из 5)


2. Расчеты Архимеда

2.1 Закон Архимеда

1) На тело, погруженное в жидкость (газ), действует выталкивающая сила, равная весу вытесненной им жидкости.

FА = ρgV

где р - плотность жидкости (газа), g - ускорения свободного падения, а V - объем погруженного тела ( или часть объема тела, находящаяся ниже поверхности). Выталкивающая сила, называемая также архимедовой силой, равна по модулю и противоположна по направлению силе тяжести, действовавшей на вытесненный телом объем жидкости (газа), и приложена к центру тяжести этого объема.

Следует заметь, что тело должно быть полностью окружено жидкостью. Так, например, закон Архимеда нельзя применить к кубику, который лежит на дне резервуара, герметично касаясь дна. 2) Мы не можем точно проследить логику рассуждений Архимеда. За древностью лет много информации, к сожаленью, утеряно, но попробуем мысленно перенестись в 287 – 212гг до н.э. и воссоздать картину размышлений великого греческого ученого изложенную в сочинении «О плавающих телах».

Сочинение " О плавающих телах " исследователи относят к числу самых поздних, а некоторые считают его последним научным трудом Архимеда. Это сочинение состоит из двух книг. В первой книге Архимед, излагает: тела, равнотяжелые с жидкостью, будучи опущены в эту жидкость, погружаются так, что никакая из часть не выступает над поверхностью жидкости и она не будет двигаться вниз. Подробно разбирает вопросы, связанные с погружением твердых тел в жидкость, и формулирует закон, до сих пор приводимый в любом школьном учебнике. И здесь подход к проблеме тот же: на основание опытных наблюдений Архимед строит модель жидкости, с помощью которых получает ряд следствий, обосновывая их строгими геометрическими доказательствами. Во второй книге: тело более легкое, чем жидкость, будучи опущено в эту жидкость, не погружается целиком, но некоторая часть его остается над поверхностью жидкости ; Тело более тяжелое, чем жидкость, опущенные в эту жидкость, будут погружаться, пока не дойдут до самого низа и в жидкости станут легче на величину веса жидкости в объеме, равном объему погруженного тела. Он рассматривает принцип работы ареометра и условие равновесия в жидкости тел, имеющих форму сегмента параболоида. Выводы Архимеда представляли практический интерес судостроения. 3) Рассмотрим вывод закона Архимеда с точки зрения математики.


На все шесть граней физического тела действует со стороны жидкости (газа) гидростатическое давление р = рgh, так как боковые грани находятся на одинаковых глубинах (h3 = h4= h5 = h6) и ρ=const, g = const, то ρ3 = ρ4 = ρ5 = ρ6. С другой стороны ρ = S . Так как мы рассматриваем физическое тело кубической формы, то S1 = S2 = S3 = S4 = S5 = S6 и, следовательно, F3 = F4 = F5 = F6 и эти силы компенсируют действия друг друга (F3 + F4 + F5 + F6 = 0). Теперь рассмотрим F1 и F2. Так как h1 < h2 , то ρ = ρgh при ρ = const и g = const , ρ1 < ρ2. Так как ρ = S => F = ρS при S1 = S2 , то F1 < F2 Определяя равнодействующую силу F1 и F2 , найдем , что R = F1 + F2 , так как F1 F2 , то R = F2 - F1 , = 0. Это сила была названа выталкивающая и позже в честь Архимеда, названа FА - Архимедова сила Вычислим FА : FА = F2 - F1 , так как

F = ρS, то FА = ρ2S2 - ρ1S1 ; ( S1 = S2 = S ); FА = ρ2S - ρ1S = S(ρ2 - ρ1).

Учитывая, что ρ = ρgh, получаем:

FА = S(ρ2g2h2 - ρ1g1h1) - g1 = g2 = g = const ,

так как это ускорение свободного падения (g≈9,8) - ρ1 = ρ2 = ρ = const , так как физическое тело погруженное в однородную жидкость. Тогда :

FА = S(ρgh2 - ρgh1) = Sρg(h2-h1)

Из рисунка видно, что h2 - h1 = h ф.т., тогда

FА = Sρgh ф.т.

Из курса математики следует:


Sh ф.т. = V ф.т

то

FА = ρgV ф.т. 4)

Продолжим рассуждения, начатое в 3 пункте. Из курса динамики известно, что P = mg для случая если U = 0, а = 0, так как

mж = ρжVж

то

FА = ρж(г)V ф.т. g

Если взять столько жидкости (газа), чтобы наблюдалось равенство Vф.т. = Vж(г) . (Рассматриваем жидкость (газ), взятую в объеме погруженного физического тела) , тогда:

FА = Pж(г) (при Vф.т. = Vж(г)).

2.2 Условия плавания тел

1. Если FА › mg, то физическое тело поднимается вверх.

2. Если FА = mg, то физическое тело плавает внутри.

3. Если FА ‹ mg, то физическое тело погружается ко дну (тонет).

Рассмотрим

FА = mg, FА = ρж . g . Vт и mт = ρт . Vт,


подстав данные выражения получим:

ρж . g . Vт = ρт . Vт . g,

тогда ρж = ρт. Следовательно:

1) Если ρж › ρт , то физическое тело поднимается вверх.

2) Если ρж = ρт, то физическое тело плавает внутри.

3) Если ρж ‹ ρт, то физическое тело погружается ко дну.


3. Демонстрационный эксперимент

Рассмотрим 2 шарика:

FА = ρг . g . Vm

Vm(1) = Vm(2)

mg = (mоб + mг)g

mоб(1) = mоб(2)

т.к. М(возд) = 29 . 10-3 кг/моль, а М(Не) = 4 . 10-3 кг/моль, то М(возд) › М(Не), из этого получаем: m(возд) › m(Не), т.е. mg(1) › mg(2)


4. Воздухоплавание в военных условиях

После первых полётов, носивших больше развлекательный характер, аэростаты стали применять с научными (для изучения атмосферы, географических исследований и др.) и военными целями. В 1849 во время борьбы Италии за независимость австрийские войска организовали с помощью небольших (объёмом 82 м3) свободных аэростатов бомбардировку Венеции зажигательными и разрывными бомбами. В 1859 в сражении при Сольферино французский воздухоплаватель Ф. Надар с привязного аэростата производил разведку расположения австрийских войск, сделав фотоснимки позиций противника. Привязные аэростаты для разведки и корректирования артиллерийского огня применялись также в США во время Гражданской войны 1861 65. Во франко-прусской войне 1871 посредством свободных аэростатов была налажена связь окружённого немцами Парижа с остальной Францией. За 4 месяца на 65 аэростатах объёмом 1 2 тыс. м3 было переправлено 3 млн. писем и депеш общим весом 16 675 кг, а также 150 пассажиров.

В 1871 парижские коммунары пользовались аэростатами для разбрасывания листовок революционного содержания. С момента возникновения В. до 70-х гг. 19 в. применялись только свободные и привязные аэростаты. Первый проект управляемого аэростата с воздушными винтами, вращаемыми вручную, был выдвинут в 1784 французским военным инженером Ж. Менье. В 40-х гг. 19 в. проекты управляемых аэростатов были предложены русским военным инженером И. И. Третесским, предусматривавшим, в частности, ракетный двигатель, и другими изобретателями. 24 сентября 1852 француз А. Жиффар совершил первый управляемый полёт со скоростью до 11 км/ч (в безветренную погоду) на аэростате с паровым двигателем. В 1869 в России была организована постоянная Комиссия по применению воздухоплавания к военным целям.

С 1870 в Усть-Ижорском сапёрном лагере под Петербургом производились наблюдения с аэростатов за передвижениями войск и корректирование артиллерийской стрельбы по невидимым с земли целям. В 1875 русский учёный Д. И. Менделеев выдвинул идею стратостата и обосновал выбор конструкции отдельных его частей.

В 1880 был основан воздухоплавательный отдел Русского технического общества.

В 1885 в Петербурге была учреждена кадровая команда военных воздухоплавателей (в 1887 реорганизована в "Учебный кадровый воздухоплавательный парк"), которая приступила к учебно-тренировочным подъёмам и полётам на аэростатах.

В 1885 в Главной физической обсерватории, которой руководил академик М. А. Рыкачёв, были разработаны самопишущие метероприборы, поднимавшиеся на шарах-зондах и воздушных змеях. 19 августа 1887 Менделеев на военном аэростате совершил полёт из г. Клина длительностью 3 ч 36 мин на высоте 3350 м для наблюдения солнечного затмения. Русские учёные использовали для научных целей и учебные полёты офицеров, снабжая аэростаты метеоприборами. Одним из организаторов этих полётов и многократным их участником был военный учёный профессор М. М. Поморцев. Ему удалось выработать методику наблюдений, усовершенствовать существовавшие аэронавигационные приборы и создать новые. Научное применение В. не ограничивалось областью метеорологии и аэрологии. Производились попытки применить свободные аэростаты (позднее дирижабли) для исследования труднодоступных местностей. В 1897, вылетев на аэростате объёмом 5000 м3 с о. Шпицберген, шведский воздухоплаватель С. Андре с двумя спутниками пытался достичь с попутным ветром Северного полюса, но попытка была неудачной, воздухоплаватели погибли.