Гидродинамические явления будут подобными если течения протекают в геометрически подобных системах. Наблюдается подобие полей скоростей и других важных физических характеристик. Константы пропорциональности называются константами подобия.
Выясним условия, при которых течения описываемые системой Навье-Стокса будут подобными. По геометрическим условиям однозначности должен быть задан какой-то характерный линейный размер:
1)
; 2) по физическим условиям однозначности должны быть определены ; 3) по граничным условиям должна быть определена ; 4) по начальным условиям задано характерное время , например период определяющий темп внешних воздействийТаким образом в уравнениях зависимые переменные определяются как функции независимых переменных x, y, z, t и параметров задающих условие однозначности
Приведем уравнение движения к безразмерному виду методом масштабных преобразований. Будем относить физические величины к одномерным параметрам
; ;В качестве масштаба для массовых сил примем ускорение свободного падения.
; ; ;Выразим размерные величины через их масштабы в Уравнении Навье-Стокса:
Аналогично могут быть получены составляющие системы уравнений вдоль оси у и z.
Уравнение сплошности после приведения к безразмерному виду не изменится. После приведения уравнения движения к безразмерному виду появились безразмерные комплексы.
- критерий динамической гомохронности; - критерий Фруда; - число Эйлера; - критерий Рейнольдса.После приведения уравнений к безразмерному виду изменился их физический смысл, т.к. один и тот же вид уравнений с подобными условиями будут соответствовать не единственному условию, а целой группе подобных явлений. В соответствии с теоремой подобия Кирпичева-Гухмана гидродинамические явления будут подобными если они: 1) описываются одной системой дифуравнений; 2) имеют подобные условия однозначности; 3) имеют численно равные критерии подобия
21. Критериальные уравнения. Критерии и числа подобия
После приведения уравнения Навье-Стокса к следующему виду они стали содержать следующие типы переменных: 1) безразмерные независимые переменные
; 2) безразмерные зависимые переменные ; 3) безразмерные критерии – комплексы, состоящие из величин заданных по условиям однозначности .После приведения к безразмерному уравнению изменился характер уравнений. Уравнения приобрели обобщенный вид, т.к. одно и то же значение любого критерия может быть получено путем бесконечного варьирования входящих величин. Уравнения могут быть записаны в виде:
- система обобщенных или критериальных уравнений
Критерии подобия могут быть двух видов: 1) состоящие из разноименных параметров; 2) имеющие периодический вид, т.к. представляют собой отношение одноименных параметров. Пример: для труб:
.Относительные переменные также могут быть двух видов:
1) отношение переменной к одноименной величине, заданной по условию однозначности:
2) если по условию однозначности нельзя задать одноименную величину, то строится комплекс приводящий величину к безразмерному виду – число подобия:
В числа подобия входят определяемая величина. Критерий подобия состоит из заранее известных величин, заданных по условиям однозначности..
1) Критерий Рейнольдса
- определяет соотношение сил инерции и вязкости в однородном потоке. Это важнейший гидродинамический критерий для вынужденного движения. При движении потока в нем возникают возмущения, которые исходят от стенок канала или вносятся в поток извне. Влияние возмущений зависит от соотношения сил. Если преобладают силы вязкости возмущения гаснут и поток не меняет своей структуры. Если преобладают силы инерции возмущения развиваются дальше, поток меняет течение, изменяется его структура. Граница соотношения сил определяется по значению Reкр. Если Re<Reкр преобладают вязкие силы, Re>Reкр – силы инерции. Re характеризует движение при соизмеримости инерции и вязкости. Если в потоке преобладает какой-то один вид сил характер перестает зависеть от величины Re. В этом случае говорят, что течение автомодельно относительно критерия Re.2) Критерий гидродинамической гомохронности
- определяет соотношение между периодом темпа внешних воздействий на поток и периодом перестройки скоростного поля. Используют только для нестационарных задач. - время, за которое проходит частица, движущаяся со скоростью V0, путь l0. Если в задаче время подлежит определению, то рассматривается не критерий, а число Струхала:3) Критерий Фруда
- определяет соотношение между силами инерции и тяжести в потоке. Используется только в задачах, в которых гравитационные эффекты имеют важное значение. Однако в таких задачах часто сложно задать характерную скорость (при естественной конвекции), поэтому строится критерий, в котором исключается скорость: - критерий Галилея.При гравитационном движении важное значение имеет параметрический критерий:
.Причем ρ и ρ0 – плотности не только в разных точках, но и в различных фазах.
- критерий Архимеда.При гравитационном течении однофазной жидкости движение возникает в результате расширения:
- коэффициент объемного расширения. - критерий Гросгофа.4) Число Эйлера
- определяет соотношение сил давления и сил инерции; определяемая величина; т.к. часто давление в потоке неизвестно, то больший интерес представляет определение перепада давления на рассматриваемом участке .22. Моделирование ГГД явлений