Термодинамические рассуждения, изложенные выше, проведены в предположении, что температура остается постоянной. Поэтому пьезоэлектрический модуль
может быть охарактеризован как изотермический модуль. Нетрудно видеть, как следует изменить эти рассуждения применительно к адиабатическим процессам. Формулы (1), (3) и (4) остаются верными и для таких процессов. Только изотермический пьезоэлектрический модуль надо заменить адиабатическим.5.Физический механизм обратного пьезоэлектрического эффекта
Что касается связи между направлениями происходящих изменений в прямом и обратном пьезоэлектрических эффектах, то здесь применим общий принцип Ле Шателье, как в этом нетрудно убедиться с помощью формул (1), (3) и (4). Например, при растяжении пластинки вдоль оси
(см. рис. 4) или сжатии вдоль оси на ее нижней поверхности, как мы видели, возбуждается положительный заряд, а на верхней — отрицательный . Иными словами, в пластинке появляется электрическое поле, направленное вверх . Согласно принципу Ле Шателье появление такого поля можно рассматривать как противодействие системы приложенным растягивающим и сжимающим силам. Это противодействие проявляется в том, что возникают силы, стремящиеся сжать пластинку в направлении оси и растянуть в направлении оси . Если поле усилить, то увеличатся и противодействующие силы. Они появятся и в недеформированной пластинке при внесении ее в электрическое поле. Если электрическое поле направлено вверх , то в направлении оси пластинка сожмется, а в направлении оси - удлинится. Это находится в согласии с формулами (3) и (4). Так же можно рассуждать и в остальных случаях.Физический механизм обратного пьезоэлектрического эффекта можно разъяснить на той же модели, которая применялась при рассмотрении прямого эффекта. Если, например, на поверхности
и (см. рис. 3 б)) нанести электрические заряды указанных знаков, то ион кремния 3 притянется к поверхности , а ион кислорода 4 к поверхности , в результате чего ячейка вытянется в направлении оси . Ионы кремния 1 и 2 будут отталкиваться от поверхности , а ионы кислорода- от поверхности , смещаясь при этом внутрь увеличившегося зазора между ионами 3 и 4. Это приведет к сжатию ячейки в поперечном направлении (вдоль механической оси ).Обратный пьезоэлектрический эффект имеет внешнее сходство с электрострикцией. Однако между этими двумя явлениями имеется и существенное различие. Электрострикция имеет место во всех диэлектриках при помещении их в неоднородное электрическое поле. Обратный пьезоэлектрический эффект наблюдается только в кристаллах, да и то не во всех. Он существует и в однородных электрических полях. Силы электрострикции возникают в результате действия электрического поля на поляризованный диэлектрик, поляризация которого обусловлена тем же полем. Поэтому эктрострикционные силы квадратичны по полю. Они не меняются при изменении направления электрического поля на противоположное. Напротив, обратный пьезоэлектрический эффект возникает в результате действия внешнего электрического поля на уже имеющиеся противоположно заряженные ионные решетки кристалла. Возникающие здесь силы линейны по полю. Они меняют свои направления на противоположные при изменении знака электрического поля.
6.Свойства пьезоэлектрических кристаллов
В различных кристаллах пьезоэлектрический эффект может возникать не только под действием нормальных сил давления или натяжения, но и под действием касательных сил. Внутреннее состояние упругих напряжений кристалла характеризуется симметричным тензором упругих натяжений.
, .(первый индекс указывает направление внешней нормали площадки, к которой приложена сила натяжения, а второй — направление координатной оси, на которую проецируется эта сила). Для сокращения записи компоненты тензора натяжений принято нумеровать одним индексом, полагая
, , , , .Опыт показывает, что в случае малых деформаций между компонентами вектора поляризации Р и компонентами тензора натяжений существует линейная связь. Такая зависимость аналогична известному закону Гука и имеет примерно ту же область применимости. Таким образом, в общем случае можно написать
, , (5) .Отсюда видно, что в общем случае пьезоэлектрические свойства кристалла характеризуются восемнадцатью постоянными. Эти постоянные называются пьезоэлектрическими модулями. Впрочем, число независимых пьезоэлектрических модулей уменьшается из-за симметрии кристалла. Чем выше симметрия кристалла, тем меньше число независимых пьезоэлектрических модулей, которыми он характеризуется. Так, в случае кварца
, , , а все остальные пьезоэлектрические модули обращаются в нуль. Таким образом, пьезоэлектрические свойства кварца характеризуются только двумя модулями, за которые можно принять и . Тогда , , (6) .При этом
. Числовое значение модуля было приведено выше.7.Применение эффекта
Известны сотни веществ, которые в принципе могли бы быть использованы для практического применения пьезоэлектричества. Однако дополнительные требования (большая величина пьезоэффекта, механическая и электрическая прочность, устойчивость к влаге и пр.) резко ограничивают список практически пригодных кристаллов. Из них на первом месте стоит кварц. Он превосходный изолятор, поэтому в нем можно возбуждать сильные поля, порядка
. Научно-технические применения пьезоэлектрического эффекта (прямого и обратного) весьма многочисленны и разнообразны. Не имея возможности останавливаться на этой стороне вопроса, укажем на пьезоэлектрический манометр, широко применяющийся для измерения быстропеременных давлений. В этом приборе кварцевая пластинка, вырезанная определенным образом, помещается внутри исследуемого газа О давлении газа судят по величине пьезоэлектрических зарядов, появляющихся на пластинке. Укажем далее на разнообразнейшие пьезоэлектрические преобразователи: пьезоэлектрические стабилизаторы и фильтры в радиотехнике, пьезоэлектрические датчики в автоматике и телемеханике, виброметры, звукосниматели в технике звукозаписи, микрофоны, телефоны, гидрофоны в акустике и т.д. Особо важное значение имеют кварцевые излучатели ультразвука, предложенные во время первой мировой войны французским физиком Ланжсвеном (1872-1946). Смещения, возникающие в кварцевой пластинке при наложении на нее статического электрического поля, ничтожны. Однако их можно увеличить в тысячи, а энергию колебаний -в миллионы раз, если воспользоваться переменным электрическим полем. Для этого следует использовать явление резонанса, т. е. подобрать частоту наложенного электрического поля равной одной из собственных частот механических колебаний кварца. Собственные частоты кварца определяются соотношением