Смекни!
smekni.com

Паровой котел ДЕ 6,5-14 ГМ (стр. 9 из 11)

Определяем сопротивление двух поворотов под углом 90

, Па

где:

– коэффициент местных сопротивлений под углом 90°

1*2+2=4

Определяем аэродинамическое сопротивление котельной установки ∆hк.у , Па

∆hк.у=448,6+30+243,28+64,64+88,88=845,4


9. Расчет и выбор тягодутьевых устройств

9.1 Расчет и выбор дымососа

Для котлов паропроизводительностью 1 тонна и выше рекомендуется устанавливать индивидуальные дымососы.

Определяем производительность дымососа Qр.д, м3

Qр.д1*Vсекдым

где: β1 – коэффициент запаса при выборе дымососа по производительности;

β1=1,05

101080 – нормальное атмосферное давление, Па

Б – барометрическое давление в месте установки дымососа, Па

Vсекдым – количество дымовых газов от одного котла, м3

Vсекдым=

Vсекдым=

Qр.д=1,05*2,82

=2,97

Определяем расчетный полный напор дымососа Нр, Па

Нр= β2(∆hку -hс)

где: β2 – коэффициент запаса по напору

β2=1,1

Нр=1,1(845,4-164,8)=748,66

Определяем мощность электродвигателя для привода дымососа N, кВт

где: Qр.дым – производительность, м3

Ндым – напор, Па

– КПД дымососа, 0,83%

По таблице источника 2 выбираем подходящий по производительности Qр.д и напору Нр дымосос, выписываем его основные характеристики:

марка дымососа ДН-9

производительность, м3/ч 14,65*103

напор, кПа 1,78

КПД, % 83

марка электродвигателя 4А160S6

мощность, кВт 11

9.2 Расчет и выбор вентилятора

Для котлов паропроизводительностью от 1 тонны и выше рекомендуется устанавливать индивидуальные дутьевые вентиляторы.

Определяем производительность вентилятора ( количество холодного воздуха забираемого вентилятором) Qв, м3


где: Вр – расчетный расход топлива, кг/с

β1 – коэффициент запаса, равный 1,1

Определяем полный расчетный напор вентилятора Нр. в , Па

Нр.в= ∆hг+∆hв

где: ∆hг – сопротивление горелки, Па, принимаем ∆hг=1000 Па

∆hв – сопротивление воздуха, Па; принимаем 10% от сопротивления горелки принимаем ∆hв =100 Па

Нр.в=1000+100=1100

Определяем мощность для привода вентилятора Nдв , кВт

– КПД двигателя вентилятора, 0,83%

По таблице 14.1 источник 2 выбираем подходящий по производительности Qр и напору Нр.в вентилятор; выписываем его основные характеристики:

марка вентилятора ВДН-8

производительность, м3/ч 10,2*103

напор, кПа 2,19

КПД, % 83

марка электродвигателя 4А160S6

мощность, кВт 11


10. Расчет и выбор дымовой трубы

Определяем минимальную допустимую высоту трубы Н,м

где: ПДК – предельно допустимая концентрация вредного вещества, мг/м3.

А – коэффициент, зависящий от метеорологических условий местности;

А=120

F – коэффициент, учитывающий скорость движения вредных веществ в атмосферном воздухе; принимаем по СН 369-74

F=1

∆t – разность температур продуктов сгорания, выбрасываемых из трубы и окружающего воздуха, К

∆t=120

MSO2-масса оксидов серы SO2 и SO3,г/с

MNO2-масса оксидов азота,г/с

MСO2-масса оксида углерода, выбрасываемой в атмосферу,г/с

Mз- масса летучей золы, г/с

V- объемный расход удаляемых продуктов сгорания, м3/c

Z –число дымовых труб.

Определяем выброс оксидов азота, рассчитанный по NO2 , (г/с)

МNO21*К*Вр*Qрн(1- qн/100)(1 – β2r) β3,


где: β1 –безразмерный поправочный коэффициент, β1 = 0,85 , таблица 12,3, источник 1

β3 – коэффициент, учитывающий конструкцию горелок β3 = 1, стр. 235, источник 1

r – степень рециркуляции, r = 0 , стр. 235, ситочник1

β2 – коэффициент, характеризующий эффективность воздействия рециркулирующих газов, β2 =0,02 ,таблица 12.4, источник 1

К- коэффициент, характеризующий выход оксидов азота на 1 ГДж теплоты сожженного условного топлива, кг/ГДж, определяется в зависимости от номинальной нагрузки котлов,

К=3,5(D/70)

D – паропроизводительность котла, D = 6,5

К=3,5(6,5/70)=0,325

МNO2=0,85*0,325*0,129*3*36,68(1- 0/100)(1 – 0,02*0) 1=3,9

Масса оксидов углерода МСО2,г/с, выбрасываемая в атмосферу, определяется как:

где: Сн-коэффициент, характеризующий выход СО при сжигании топлива;

β – поправочный коэффициент, учитывающий влияние режима горения на выход СО ( при нормативных значениях коэффициента избытка воздуха на выходе из топки принимается β=1)


Определяем объемный расход продуктов сгорания через трубу от всех работающих котлов, м3

где: n – число котлов, установленных в котельной, шт, n=3

В – расход топлива одним котлом, м3/с, В=0,129

Определяем диаметр устья дымовой трубы Dвыхтр , м

где: ωвых – скорость продуктов сгорания на выходе из трубы. Принимаем равной 30 м/с, стр. 237 источник 1;

Принимаем стандартный диаметр устья дымовой трубы 1,2 м.

Для вычисления уточненной высоты дымовой трубы определяем значения коэффициентов f и vм:

Значение коэффициента m в зависимости от параметра 𝒇:

Безразмерный коэффициент n в зависимости от параметра

:

При

>2 n=1

Минимальную высоту дымовой трубы во втором приближении определяют:

В соответствии со СНиП П-35-76 выбираем стандартную высоту дымовой трубы 30 метров.

Аэродинамическое сопротивление дымовой трубы определяют следующим образом.

Скорость продуктов сгорания на выходе из дымовой трубы wвых принимают равной значению, принятому в расчете минимально допустимой высоте трубы.

Определяют уменьшение температуры продуктов сгорания на 1 м трубы из за их охлаждения, °С:

Для кирпичных и железобетонных труб.

где: D- паропроизводительность всех котлов, кг/с.

Температура продуктов сгорания на выходе из трубы, °С:

tвых=tух - ∆t

где: tух – температура уходящих газов за котлами, °С.

tвых=155-0,17*30=149,9

Диаметр основания трубы,м:

Dосн =2Нтрi+

где: i = 0,02-0,03 конусность железобетонных и кирпичных труб; для стальных труб i=0;


Dосн =2*30*0,02+1,2=2,4

Средний диаметр дымовой трубы, м:

Dср=0,5(Dосн +

)

Dср=0,5(2,4+1,2)=1,8

Средняя температура дымовых газов в трубе, °С:

tср = 0,5(tух+tвых)