При изменении нагрузки оказывается необходимым изменять расход протекающего через турбину пара. Это достигается соответствующим открытием регулирующих клапанов. Благодаря тому, что клапаны закрываются и открываются последовательно, часть пара, проходящая через полностью открытые клапаны, не подвергается мятию и поступает к соплам первой ступени с полным начальным давлением. Лишь та доля пара, которая проходит через частично открытый клапан, дросселируется в клапане и подходит к своей сопловой группе с пониженным давлением. Способ управления впуском пара в турбину, при котором доступ пара к сопловым группам открывается последовательно, называется сопловым парораспределением. Первая ступень, получающая в зависимости от нагрузки турбины пар из различного числа сопловых групп, называется регулирующей ступенью. Наряду с таким способом парораспределения существует также дроссельный способ подвода пара, отличающийся тем, что все количество подводимого к турбине пара проходит через общий регулирующий клапан. При частичных нагрузках турбины пар подвергается мятию вследствие частичного закрытия дроссельного регулирующего клапана.
Вал турбины лежит на двух подшипниках, которые воспринимают вес ротора. Передний подшипник в турбине, одновременно фиксирует осевое положение ротора по отношению к статору и воспринимает осевые усилия, действующие на ротор. Таким образом, передний подшипник является комбинированным опорно-упорным подшипником. Упорная его часть построена по принципу сегментного подшипника Митчеля.
В местах, где вал проходит через корпус турбины, расположены уплотнения, которые называются концевыми уплотнениями вала. Переднее уплотнение вала служит для уменьшения утечки пара из корпуса турбины в машинное помещение. Заднее уплотнение предупреждает возможность засасывания атмосферного воздуха в выхлопной патрубок и конденсатор турбины. Засасывание воздуха в конденсатор привело бы к повышению давления в нем и уменьшению экономичности работы турбины. Для того чтобы предупредить просачивание воздуха в конденсатор, к заднему уплотнению подводится пар низкого давления. В местах, где вал проходит через центральные отверстия промежуточных диафрагм, установлены промежуточные уплотнения, препятствующие протечке пара из одной ступени в другую, минуя сопловые решетки ступени.
Правый конец вала турбины при помощи муфты соединен с ротором генератора, один из подшипников которого расположен на корпусе выхлопного патрубка турбины.
Передний конец вала турбины гибкой муфтой соединен с валом двустороннего центробежного масляного насоса, который всасывающим патрубком опирается на прилив в картере переднего подшипника. В полость всасывания насоса масло подается под небольшим избыточным давлением с помощью инжектора.
Масляный насос обеспечивает подвод масла к органам управления системы регулирования (с давлением 20 бар), а также с помощью инжектора подает масло к подшипникам генератора и турбины (при давлении 0,5 бар). На конце вала насоса располагается быстроходный упругий регулятор скорости, который управляет золотниками системы регулирования.
В поперечных расточках переднего конца вала турбины размещены два бойка предохранительного выключателя, который вызывает полное прекращение подачи пара к турбине в случае повышения скорости ее вращения на 10 – 12%.
В современных турбинах большой мощности предусматривается специальное валоповоротное устройство, при помощи которого можно медленно вращать вал неработающей турбины. Валоповоротное устройство состоит из электродвигателя, связанного с червячной передачей.
Червяк с помощью червячного колеса вращает промежуточный валик, на котором, на винтовой шпонке, располагается ведущая шестерня. Последняя может смещаться в осевом направлении и входить в зацепление с большой шестерней, укрепленной на полумуфте, соединяющей вал турбины и вал генератора. При пуске турбины, когда ее вал ускоряется паром, ведущая шестеренка проворачивается по винтовой шпонке и автоматически выходит из зацепления с шестерней, сидящей на полумуфте турбины.
Корпус турбины, а также корпусы подшипников имеют горизонтальный разъем на уровне оси вала турбины. Для того чтобы разобрать турбину, необходимо разболтать соединение фланцев горизонтального разъема корпуса турбины и корпусов подшипников. После этого могут быть подняты крышки корпусов.
Современные турбины для привода генераторов электрического тока рассчитываются на работу с постоянным числом оборотов. Сохранение постоянства числа оборотов обеспечивается автоматическим регулированием.
Управление органами регулирования осуществляется маслом. Поэтому система регулирования обычно сочетается с системой смазки.
В подшипниках турбины выделяется значительное количество тепла, которое необходимо отводить для того, чтобы температура подшипника не превышала допустимой (примерно 60° С). Отвод тепла от подшипника обеспечивается циркуляционной системой смазки, при которой масло не только уменьшает трение, создавая пленку между валом и вкладышами подшипника, но и служит для охлаждения подшипника. Нагретое масло, покидающее подшипник, после охлаждения вновь используется для смазки.
Детали ротора паровой турбины (лопатки, диски), даже при нормальном числе оборотов турбины, подвергаются высоким напряжениям, которые вызываются центробежными силами. Повышение числа оборотов турбины сверх рабочего приводит к такому увеличению центробежных сил, которое может вызвать аварию турбины. Для того чтобы предохранить турбину от недопустимого повышения числа оборотов в случае неисправной работы основной системы регулирования, современные турбины снабжаются предохранительными выключателями. Предохранительный выключатель располагается, как правило, на валу турбины. В случае если число оборотов турбины превысит нормальное число оборотов на 10–12%, предохранительный выключатель вызывает быстрое закрытие пускового клапана турбины и ее остановку.
Особенности крупных паровых турбин
Повышение параметров пара и единичной мощности агрегатов, а также введение промежуточных перегревов пара обусловили применение турбин с большим числом цилиндров. Увеличение расхода пара, с одной стороны, повышает экономичность первых ступеней турбины вследствие увеличения высот лопаток в цилиндре высокого давления (ЦВД), а с другой стороны, усложняет проектирование последних ступеней. Стремление повысить термический КПД цикла приводит к уменьшению абсолютного давления в конденсаторе до 0,03 – 0,035 бар, что в значительной мере увеличивает объемный расход пара последней ступенью. Для получения минимальных потерь с выходной кинетической энергией необходима, возможно, большая ометаемая лопатками площадь. Требуемая ее величина достигается, во-первых, увеличением длины лопатки и диаметра последней ступени, во-вторых, увеличением числа параллельных потоков пара в части низкого давления (ЧНД). С этой целью возможно также применение двухъярусных лопаток.
Максимальная длина лопатки во многом определяется соображениями прочности. Вместе с тем проблема создания длинных лопаток не только прочностная, но и аэродинамическая. С увеличением относительной длины лопаток растет опасность отрыва потока в корневой области. Это серьезное препятствие на пути дальнейшего увеличения относительной длины лопаток. Современные методы проектирования позволяют избежать отрывов потока на расчетных режимах. При частичных же нагрузках в таких ступенях имеют место отрывы потока, охватывающие широкую область в корневой части колеса. Эти явления снижают экономичность последних ступеней, а также оказывают неблагоприятное влияние на вибрационную прочность колеса.
Число выходов пара для очень мощных агрегатов уже сейчас достигает восьми. С получением максимальной площади выхода связан вопрос о выборе числа валов агрегата. Одновальный агрегат проще и обычно дешевле двухвального. В то же время двухвальный агрегат позволяет применить разную скорость вращения обоих валов. Уменьшение скорости вращения ЧНД позволяет увеличить входную площадь последней ступени при том же уровне допускаемых напряжений и уменьшить потери с выходной скоростью.
Двухвальные агрегаты получили широкое распространение за рубежом. Это относится не только к очень мощным установкам обычного типа, но также к атомным агрегатам, работающим при сравнительно низких параметрах пара и имеющих огромные объемные расходы в последних ступенях турбин. Кроме того, в ряде стран (США, страны Латинской Америки и др.) применяется частота критического тока 60 Гц, что значительно усложняет задачу создания длинных лопаток при высокой скорости вращения (3600 об/мин).