Описанный метод плох тем, что из расплава может быть вытянут только один слиток, так как содержание примеси в конечном (эмиттерном) расплаве слишком велико, чтобы он мог служить исходным (коллекторным) расплавом для следующего слоя транзисторов. Но был найден остроумный метод, позволяющий устранить эту трудность.
Примеси накапливаются непосредственно перед перемещающейся в расплаве границей между твердым и жидким материалом. Степень накопления (концентрация) примесей зависит от скорости роста твердой фазы. Если доноры и акцепторы, введенные в жидкую фазу, таковы, что одни из них больше "предпочитают" твердую фазу, чем другие, то при вытягивании кристалла с чередованием ускорения и замедления образуются чередующиеся слои n- иp-типа, и в одном слитке можно получить целый ряд транзисторных слоев.
В результате на большом кристалле образуется полупроводниковаяnpn-структура, пригодная для изготовления транзисторов (сэндвич). Разумеется, таким же способом можно получать и слои pnp-типа. Сэндвич отпиливают от кристалла и разрезают в двух взаимно перпендикулярных направлениях на отдельные транзисторные элементы длиной ок. 3 мм с поперечным сечением 0,6ґ0,6 мм. Эти элементы протравливают для удаления повреждений, возникших при разрезании, и к концам припаивают выводы. Перемещая с помощью микроманипулятора заостренную проволочку толщиной 0,05 мм по поверхности германиевого элемента, электрически определяют участокp-типа проводимости базы и импульсом малого тока приваривают к нему базовый вывод.
У транзисторов с выращенными переходами также имеются существенные недостатки, ограничивающие возможности их применения. Коэффициент усиления таких транзисторов не очень велик. Частота, на которой возможно усиление, ограничивается толщиной базы и при толщине, равной 1 мм, не может быть больше ~5 млн. герц. Транзисторами с выращенными переходами можно пользоваться для передачи низкочастотных сигналов, но они непригодны для цифровых схем и для коммутации. Однако приборы такого типа подтвердили правильность теории и указали путь к более сложным и совершенным транзисторам.
Сплавные плоскостные транзисторы.Сплавной плоскостной транзистор представляет собой тонкую пластинку германия, в которую с разных сторон вплавлены два шарика из индия, образующих эмиттер и коллектор (рис. 5).
Рис. 5. Сплавной плоскостной транзистор типа pnp, показанный схематически в разрезе.
Представляет собой электронный ключ, который открывается и закрывается при изменении направления смещения. Разные варианты такого устройства применяются в компьютерах, телефонном оборудовании и радиоприемниках.
Зонное выравнивание.Исходный материал нужного качества получают методом зонного выравнивания, который можно считать разновидностью метода зонной очистки. В один конец графитовой лодочки помещают соответствующим образом ориентированный затравочный кристалл германия, прижатый к слитку поликристаллического Ge. В торце слитка со стороны затравки имеется прорезь с вложенными в нее небольшими пластинками германия (n-типа), легированного сурьмой. При помощи индукционной катушки осуществляют однократное прохождение по слитку расплавленной зоны материала, легированного сурьмой. На фронте охлаждения зоны остается ровно столько сурьмы, сколько нужно для получения требуемого удельного сопротивления базы n-типа. Такой метод дает слитки удовлетворительного качества длиной ок. 50 см и диаметром 3 см.
Транзисторы изготавливаются из слитков методами массового производства. Тонкие круглые германиевые пластинки шириной около 2,5 мм, тщательно протравленные для удаления повреждений, вызванных разрезанием, загружаются виброустройством в многогнездный держатель. Индиевые шарики засыпаются в распределитель, который кладет по одному шарику на каждую пластинку. Все устройство перемещается через водородную печь; при этом в пластинку вплавляется эмиттер. Затем пластинки переворачивают, и процесс повторяется с несколько более крупными шариками для коллектора. Водород нужен для очистки поверхности германия от окисла, чтобы индий хорошо ее смачивал. Длительность обработки в печи и температуру подбирают так, чтобы толщина базы составляла примерно 0,025 мм.
Кристаллическую ось германия выбирают таким образом, чтобы граница раздела между индием и германием была плоской и параллельной одной из кристаллических плоскостей германия. При этом два перехода, приближающихся друг к другу с противоположных сторон пластинки, оказываются параллельными и могут быть подведены очень близко друг к другу. При охлаждении германий снова кристаллизуется на исходной пластинке. Рекристаллизованная область теперь становится областью p-типа, так как она сильно легирована индием. К оставшемуся за ее пределами индию можно припаять выводы. Транзисторы npn-типа изготавливаются по аналогичной технологии, но в этом случае в исходный германий p-типа вплавляется ввод, легированный сурьмой.
Далее поверхность германия стабилизируют легким протравливанием в щелочном растворе. Затем транзистор высушивают в нагретом воздухе с контролируемой влажностью и герметизируют. Внутри герметического стеклометаллического корпуса имеется "геттерный" влагопоглотитель – обычно крупинка пористого стекла. Контроль за влажностью очень важен, так как коэффициент усиления и токи утечки готового транзистора сильно зависят от количества влаги на поверхности германия вблизи перехода.
Сплавной германиевый транзистор может служить хорошим электронным ключом (для диапазона низких и средних частот), так как сильно легированные области коллектора и эмиттера имеют очень низкое сопротивление (доли ома) и не ограничивают переключаемый ток. Однако его граничная частота тоже не превышает нескольких десятков мегагерц. К сожалению, такой транзистор непригоден для работы при высоких температурах (выше 70–80°C) из-за увеличения тока утечки (который удваивается при повышении температуры на каждые 12 К). Хотя на смену германиевому транзистору со сплавными переходами давно уже пришли кремниевые транзисторы, значительные количества их еще производятся для специальных применений, так как они сравнительно недороги и не требуют больших напряжений для смещения эмиттера в прямом направлении.
Диффузионные германиевые транзисторы. Уже на ранней стадии разработки транзисторов стало ясно, что для улучшения высокочастотных характеристик нужен другой метод контроля толщины перехода. Таким методом явился метод диффузии. Суть его в том, что полированная очищенная тонкая пластинка германия в течение двух часов выдерживается при 650°C под воздействием источника сурьмы. (Для защиты поверхности от загрязнений процесс проводится в атмосфере водорода.) В результате образуется базовый слой толщиной порядка 1 мкм. Алюминиевый эмиттер вплавляется на глубину ок. 0,5 мкм. На поверхность пластинки напылением в вакууме наносится базовый контакт в виде полоски, отстоящей на 12 мкм от эмиттерной. Затем германий вокруг двух полосок вытравливается так, что на пластинке остается ряд меза-структур, каждая из которых содержит активные элементы транзистора (рис. 6).
Тысячи таких микрокристаллов могут одновременно обрабатываться методом диффузии. 1 – базовая область p-типа; 2 – коллекторный переход; 3 – слой диоксида кремния; 4 – коллекторный контакт; 5 – микрокристалл кремния; 6 – вывод базы; 7 – эмиттерный вывод; 8 – электрическое соединение золото – кремний; 9 – металлический кристаллодержатель; 10 – напыленный электрод; 11 – эмиттерная область n-типа; 12 – эмиттерный переход.
При толщине базы 0,5 мкм номинальная граничная частота достигает 900 МГц, что значительно больше, чем у приборов прежнего типа. Этот успех позволил проектировать схемы, рассчитанные на высокочастотные транзисторы. Высокочастотные германиевые транзисторы нашли применение в электронных схемах спутников связи и в подводных кабелях. Однако для германия так и не были реализованы потенциальные возможности, предоставляемые, в принципе, диффузионным процессом, и он был вытеснен кремнием, у которого на много порядков величины меньше токи утечки. Поэтому кремниевые транзисторы могут работать при температурах до 150°С, а не до 70°С, как германиевые.
Биполярные планарные транзисторы.Современные кремниевые планарные биполярные транзисторы почти полностью вытеснили германиевые из схем на дискретных компонентах в электронной промышленности и широко применяются в интегральных схемах, где германий вообще не используется. (Термин "планарные" означает, что все переходы выходят на поверхность, где они могут быть защищены слоем диоксида кремния. Термин "биполярные" означает, что используются носители обоих типов – и электроны, и дырки, в отличие от полевых транзисторов, о которых будет сказано ниже.)
Появление современного транзистора стало возможным благодаря успешному развитию фотолитографии, диффузии и выращивания кристаллов. Вообще говоря, существуют два вида транзисторных структур – из объемного материала и эпитаксиальная. Первая создается просто на поверхности пластинки из "массивного" кремния. Такой транзистор имеет тот недостаток, что у него большое последовательное сопротивление коллектора, нежелательное в случае переключающего устройства. Этот недостаток отсутствует при использовании эпитаксиального материала – тонкого слоя кремния с высоким удельным сопротивлением (в котором может быть создана транзисторная структура), выращенного поверх толстого слоя сильно легированного материала.