Смекни!
smekni.com

Полупроводники в современной физике и технике (стр. 3 из 3)

Разница между двумя типами фотоэлементов из сернистого таллия не ограничивается знаком фотоэффекта. В то время как при обычном знаке фотоэффекта чувствительность фотоэлемента к свету имеет такие же значения, как и в ранее известных элементах из закиси меди и селена, а именно несколько сот микроампер на один люмен падающего света, серноталлиевые фотоэлементы с положительным знаком фотоэффекта дают до 8000 мкА на люмен и оказываются чувствительными к невидимым инфракрасным лучам.

Какимобразом свет, вырывающий отрицательные электроны, может заряжать металл положительными зарядами? Это легко понять, если вспомнить, что, вырывая электроны из полосы нормальных уровней, свет освобождает там свободные места, создает положительно заряженные подвижные участки, на которые и переходят электроны из металла. Отдавая же свои электроны полупроводнику, металл заряжается положительно.

Если бы не существовало запорного слоя, фотоэлектрический ток не мог бы создать заметной разности потенциалов между металлом и полупроводником. Включение между ними такого тонкого слоя, который, пропуская электроны, обладает в то же. время достаточно большим сопротивлением, обеспечивает разность потенциалов, равную произведению силы фототока на сопротивление запорного слоя.

Таким образом, твердый фотоэлемент с запорным слоем создает не только ток, но и электродвижущую силу, достигающую 0.3 В; следовательно, такой фотоэлемент является источником электрической энергии, получаемой за счет энергии поглощенного света.

Каков же кпд фотоэлемента? В фотоэлементах из закиси меди и селена он составляет для солнечного света несколько сотых и до 0.1%. В фотоэлементах из сернистого таллия кпд приближается к 1% При ярком освещении фототоки здесь достигают 0.1—0.2 А. Но даже кпд в 1% не дает еще оснований для практического использования солнечной энергии. На 1 м2 поверхности солнце дает до 1 кВт мощности; следовательно, фотоэлемент площадью в 1 м2 в солнечные дни мог бы создавать ток мощностью в 10 Вт. Этот выход энергии не может оправдать громадной стоимости такого фотоэлемента, соответствующею 1000 обычных элементов.

Но если на данном этапе фотоэлементы не могут быть использованы для превращения солнечной энергии в электрическую, то нельзя отрицать такой возможности в будущем. Дальнейшее развитие фотоэлементов может довести их кпд до нескольких процентов. С другой стороны, стоимость их изготовления и устойчивость по отношению к атмосферным влияниям могут быть настолько улучшены, что фотоэлемент с запорным слоем может оказаться выгодным. Не надо забывать, что количество солнечной энергии чрезвычайно велико: 1 га получает 10 000 кВт мощности, а 5% от них составляет 500 кВт — энергию, достаточную для большого завода. Несомненно одно, что достижение этой цели потребует еще преодоления громадных трудностей.

Энергетическое использование солнечных лучей — дело будущего. Но и сейчас фотоэлементы широко применяются в технике; звуковое кино осуществляется при помощи фотоэлементов. Возможно, что фотоэлементы с запорным слоем благодаря своей простоте, отсутствию паразитных токов и шумов, отсутствию высоких напряжений получат преимущество перед применяемыми сейчас вакуумными фотоэлементами с вторичным усилением. Далее, фотоэлементы с успехом применяются для всевозможных случаев сигнализации, для автоматического счета, сортировки, контроля производства. Возможно, что они найдут применение также в телевидении и в самых разнообразных измерительных приборах. Первая система передачи изображений А. Корна была основана на внутреннем фотоэффекте селена.

Во многих кристаллах из полупроводников освещение создает фотоэлектродвижущую силу, достигающую нескольких сотых вольта и без запорного слоя, роль которого играет сопротивление самого кристалла.

И.К. Кикоин и М.М. Носков обнаружили, что, помещая такие вещества в сильное магнитное поле, можно наблюдать эдс, достигающие 20 В, правда, при большом сопротивлении образца и при слабом фототоке. Практического применения эти явления пока не получили.

Мало еще использованы большие термоэлектродвижущие силы, возникающие между двумя полупроводниками с разными температурами. В то время как в металлах 1° разности температур создает эдс порядка стотысячных вольта, в полупроводниках мы получаем до 0.001 В. Знак термоэлектродвижущей силы, как мы уже видели, зависит от механизма проводимости. Соединив два полупроводника с противоположными механизмами тока и нагревая место их соединения, мы получаем сумму эдс.

Термоэлемент является прибором, превращающим тепловую энергию в электрическую. Благодаря неизбежным процессам теплопроводности по тем проводам, которые несут ток, кпд термоэлементов гораздо меньше, чем в тепловых машинах. Термоэлементы из металлов дают не более 1—2% электроэнергии. Среди полупроводников можно подобрать такие, которые дают до 4%, и эту величину, по-видимому, можно будет еще увеличить. Даже при кпд в 10% термоэлементы не могут конкурировать с машинами, но благодаря крайней простоте, отсутствию движущихся частей, компактности для определенных целей термоэлементы могут получить значение не только как измерители температуры и лучистой энергии, но и как источники тока.

Техническое применение полупроводников еще в будущем. Это — один из наиболее молодых и быстро растущих участков технической изобретательности. Наша промышленность уже давно производит выпрямители для целей автоблокировки. Сейчас по разработанному ЛФТИ методу ставится производство сильноточных выпрямителей на сотни и тысячи ампер для электролиза, зарядки аккумуляторов, производства алюминия, магния и для других целей, не требующих высоких напряжений. Ставится производство селеновых выпрямителей, имеющих определенные преимущества при низких температурах и в измерительной аппаратуре. Наконец, в ЛФТИ разработаны новые серно-медные выпрямители с габаритами и стоимостью в десятки раз меньшими, чем у других типов.

Селеновые фотоэлементы производятся в Харькове и Ленинграде в количестве нескольких десятков тысяч в год. Серно-таллиевые фотоэлементы проходят еще стадию испытаний, после чего можно будет приступить к постановке производства и к широкому внедрению их в практику.

Для физической теории полупроводники имеют исключительное значение. Здесь открывается возможность изучить электрические и оптические свойства твердого тела, квантовые состояния электронов, их связь с атомами вещества. И, действительно, современные оптика и электроника твердого тела строятся на изучении полупроводников. Растущий технический опыт обогащает теорию, а теория в свою очередь открывает новые пути улучшения и применения полупроводников. Примерами этого могут служить фотоэлементы и выпрямители, технический опыт изготовления которых открыл явление запорного слоя и различие знака выпрямления. А квантовая теория, объяснив связь знака с механизмом выпрямления, указала путь рационального усовершенствования фотоэлемента и выпрямителя.

В области полупроводников наглядно проявляется взаимная обусловленность теории и практики. Полупроводники представляют поэтому благодарное поле для изучения технической физики, для изобретательства и для автоматизации производственных процессов.