Смекни!
smekni.com

Полупроводниковые материалы (стр. 1 из 6)

Министерство образования и науки Украины

ХАРЬКОВСКИЙ НАЦИНАЛЬНЫЙ УНИВЕРСИТЕТ РАДИОЭЛЕКТРОНИКИ

Кафедра МЭПУ

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

к курсовой работе по дисциплине

“Материалы электронной техники”

на тему: “Полупроводниковые материалы”

Работу выполнила Руководитель:

ст.гр.ЭЛ-05-1 проф. Слипченко Н.И.

Марокко А.Р.

Харьков 2005

РЕФЕРАТ

Пояснительная записка: 39 с., 9 рис., 1 табл., 11 источников.

Объект исследования – полупроводниковые материалы.

Цель работы – повторение и закрепление знаний об основных свойствах полупроводниковых материалов, практическое применение полученных знаний путем решения задачи.

Полупроводниковые материалы получили широкое применение в электротехнике, в связи с этим предполагается углубленное изучение свойств.

Ключевые слова: полупроводник, полупроводниковые соединения, гальваномагнитные явления, эффект Холла, подвижность носителей, заряд.


СОДЕРЖАНИЕ

ВВЕДЕНИЕ

1 СУТЬ ГАЛЬВАНОМАГНИТНЫХ ЯВЛЕНИЙ В ПОЛУПРОВОДНИКОВЫХ МАТЕРИАЛАХ

1.1 Описание гальваномагнитных явлений

1.2 Эффекты Холла, Эттингсгаузена и Нернста

2 ПОЛУПРОВОДНИКОВЫЕ СОЕДИНЕНИЯ ТИПА АIIIВV

2.1 Закономерности образования. Структура и химическая связь

2.2 Получение соединений

2.3 Физико-химические и электрические свойства

2.4 Примеси и дефекты структуры

2.5 Излучательная рекомбинация

2.6 3акоиомерности изменения свойств в зависимости от состава

2.7 Изопериодные гетероструктуры

2.8 Применение соединений АIIIВV

2.9 Арсенид галлия GaAs

2.10 Фосфид галлия

3 ПОДВИЖНОСТЬ НОСИТЕЛЕЙ ЗАРЯДА В ПОЛУПРОВОДНИКАХ

3.1 Что такое подвижность

3.2 Некоторые свойства подвижности носителей заряда

3.3 Измерение подвижности носителей заряда

3.3.1 Метод тока Холла

3.3.2 Метод геометрического магнитосопротивления

ЗАКЛЮЧЕНИЕ

ПЕРЕЧЕНЬ ССЫЛОК

ВВЕДЕНИЕ

К полупроводникам относятся материалы, свойства которых частично схожи со свойствами проводников, частично со свойствами диэлектриков. К ним относится большое количество веществ с электронной электропроводностью.

Основной особенностью полупроводников является их способность изменять свои свойства под влиянием различных внешних воздействий (изменение температуры, приложение электрического или магнитного полей и т.д.). Свойства полупроводников сильно зависят от содержания примесей. С введением примеси изменяется не только значение проводимости, но и характер её температурной зависимости.

Электрический ток в полупроводниках связан с дрейфом носителей заряда. Появление носителей заряда в полупроводниках определяется химической частотой и температурой.

Среди полупроводниковых материалов электронные полупроводники, полупроводниковые химические соединения и твердые растворы. Электрические свойства полупроводников определяются зонной структурой и содержанием примесей.

При любой температуре, отличной от абсолютного нуля, в полупроводнике за счет теплового возбуждения происходит генерация свободных электронов и дырок. Однако с процессом генерации обязательно протекает обратный процесс – рекомбинации носителей заряда. Основной характеристикой рекомбинации является время жизни.

Основным материалов полупроводниковой электроники является кремний. Для изготовления полупроводниковых приборов и устройств микроэлектроники используют как монокристаллические, так и поликристаллические материалы


1 СУТЬ ГАЛЬВАНОМАГНИТНЫХ ЯВЛЕНИЙ В ПОЛУПРОВОДНИКОВЫХ МАТЕРИАЛАХ

1.1 Описание гальваномагнитных явлений

К гальваномагнитным явлениям относят совокупность эффектов, связанных с воздействием магнитного поля на электрические свойства веществ, в которых возникает электрический ток.

Проводимость анизотропного кристалла является в общем случае тензором, и гальваномагнитные явления можно трактовать как изменение этого тензора под действием магнитного поля, приводящего к искривлению траекторий электронов между столкновениями

Рисунок 1.1 – Эффект Холла

с радиусом кривизны R= m*nvдр/eB0. Особенно сильно сказывается влияние магнитного поля при критических значениях индукции Во, при которых радиус Rстановится величиной одного порядка с длиной свободного пробега Λе. В этом случае искажение траектории настолько велико, что изменяется механизм рассеяния электронов. Критическая напряженность поля для большинства веществ очень высока (Нкp да 107 — 1011 А/м), и в реальных полях (Н = 106 А/м) искривление траекторий электронов незначительно. Однако у ряда веществ (например, у Bi) значение Нкр значительно ниже, и магнитное поле резко изменяет тензор проводимости.

Гальваномагнитные явления подразделяют на продольные и поперечные в зависимости от того, в каком направлении они проявляются относительно вектора электрического поля. К поперечным гальваномагнитным явлениям относят эффекты Холла и Эттингсгаузена, к продольным — изменение продольного сопротивления в магнитном поле и эффект Нернста.

1.2 Эффекты Холла, Эттингсгаузена и Нернста

Эффект Холлазаключается в возникновении поперечного электрического поля εн в кристалле, по которому протекает ток I, при помещении его во внешнее магнитное поле Во, перпендикулярное I (рис. 1.1). Поле Sixперпендикулярно I и Во, а его напряженность пропорциональна току и индукции магнитного поля.

Рассмотрим движение электронов на примере рис. 1.1. Под действием электрического поля они движутся справа налево, однако сила Лоренца
Fл = -e[vдрB0] смещает их к передней стенке образца, создавая тем самым поперечный градиент заряда и связанное с ним электрическое поле εн . Поперечное поле εн в свою очередь ограничивает приток электронов к передней стенке, и в состоянии равновесия сила, с которой оно воздействует на электрон, равна отклоняющей силе Лоренца:

-е εн = evдрB0 (1.1)

Отсюда

εн = - vдр B0 (1.2)

Теперь уже вектор тока I, направление которого не изменилось, не параллелен вектору суммарного электрического поля ε + εн. Угол между ними, называемый углом Холла Он, определяется равенством

(1.3)

Ток в поперечном сечении образца S

I = js — jbd (1.4)

Учитывая, что j = envдр , можно получить выражение для поперечной разности потенциалов (э.д.с. Холла):

VH=bεн = - b (i/en) B0 = - b (I/bd)(B0/en) = - (1/en)(IB0/d) (1.4)

При выводе формулы (1.4) предполагалось, что все электроны имеют одинаковые дрейфовые скорости, и не учитывался механизм их рассеяния в кристалле. Более строгое выражение для э.д.с. Холла с учетом распределения электронов по скоростям и связанного с этим: изменения времени релаксации записывается в виде

VH = - (A/en)(IB0/d) (1.5)

или, если ввести постоянную Холла RH = - A/(en),

(1.6)

Константа А определяется механизмом рассеяния электронов:

(1.7)

где r — имеет то же значение, что и в (9.58); Г — гамма-функция.

В атомных кристаллах A= 1.18, в решетках с ионизированными примесями A = 1.93, в металлах и сильно вырожденных полупроводниках, у которых в электропроводности участвуют лишь, электроны с энергией, близкой к EF, т. е. имеющие практически одинаковые скорости, А = 1.

Величина |Rn| не зависит от индукции магнитного поля и лишь в очень сильных полях уменьшается от А/(пе) до 1/(пе) при любом механизме рассеяния. У металлов RHимеет порядок 10-10 м3/Кл, у полупроводниковых соединений она возрастает вплоть до 102 м3/Кл (Si). Аномально большие значения постоянной Холла у металлов V группы (Bi, Sb, Аs)—до 106 м3/Кл.

Электроны и дырки отклоняются при тех же направлениях векторов I и В0, к одной и той же грани образца, поэтому в дырочном; и; электронном полупроводниках направления εн противоположны. Постоянную Холла Rnпринято считать отрицательной при электронном типе электропроводности и положительной — при дырочном. В частности, постоянная Холла положительна у ряда: металлов, например Cd, Zn. Это объясняется тем, что зона проводимости подобных веществ заполнена почти полностью и оставшиеся незаполненные уровни ведут себя как положительные заряды — дырки. При наличии носителей зарядов обоих знаков

(1.8)

В зависимости от концентрации и подвижности носителей заряда Rn, как следует из (1.8), может быть больше или меньше нуля. В собственном полупроводнике п = р и

(1.9)

так что при mp = mn , RH = 0. Для веществ с одним типом носителей заряда o = enm, и |Rn| = A/en, следовательно, измерив постоянную Холла и проводимость, можно найти подвижность носителей заряда:

m = (o|RH|)/A (1.10)

Таким образом, исследования эффекта Холла позволяют составить представление о знаке и концентрации носителей заряда в веществе. Из анализа температурной зависимости RHможно получить сведения о ширине запрещенной зоны и структуре примесных уровней, а измерения oдают возможность найти также подвижность носителей заряда.

В выражении для силы Лоренца мы пренебрегли тепловой составляющей скорости и считали, что все электроны обладают одинаковой средней скоростью. В этом предположении выведено условие равенства сил электрического и магнитного полей (1.1). Однако реальный электронный газ в кристалле имеет некоторое распределение по скоростям и условие (1.1) выполняется лишь для небольшой части электронов. На более быстрые электроны действует большая отклоняющая сила магнитного поля, и они могут преодолеть силы поперечного электрического поля Холла. Медленные же электроны, на которые действует меньшая отклоняющая сила Лоренца, не могут преодолеть силу еεн и смещаются к противоположной стенке образца. В результате происходит разделение электронов в поперечном направлении в зависимости от значения их скорости, и вследствие обмена энергией электронов с решеткой (быстрые электроны отдают энергию, а медленные увеличивают ее за счет решетки) в поперечном направлении появляется градиент температуры (аффект Эттингсгаузена)VT = P[IВ0], где
Р — коэффициент Эттингсгаузена. Поперечный перепад температур невелик— обычно он не превышает долей градуса.