Смекни!
smekni.com

Полупроводниковые наноструктуры (стр. 4 из 4)

Так как потенциал сверхрешетки периодичен, то энергетический спектр электрона в направлении оси сверхрешетки имеет зонный характер. Так как период сверхрешетки d значительно больше постоянной кристаллической решетки а, то получающиеся при этом сверхрешеточные зоны (минизоны) представляют собой более мелкое дробление энергетических зон исходных полупроводников.

Плотность электронных состояний в полупроводниковой сверхрешетке существенно отличается от соответствующей величины в трехмерной электронной системе. На рис. 7. показана зависимость плотности электронных состояний

в сверхрешетке от энергии Е [1]. Интервал энергии содержит три первые минизоны. Ширина каждой из этих минизон обозначена соответственно
E1,
E2 и
E3. Для сравнения на этом же рисунке приведены зависимости
(7) для трехмерного электронного газа (кривая 2) и
(i– целое) для двумерного газа электронов (штриховая ступенчатая линия 3).

Рис. 7

Расщепление энергетической зоны полупроводника в направлении оси сверхрешетки на ряд неперекрывающихся минизон является общим результатом для сверхрешеток разного типа. Дисперсионный закон для носителей заряда в минизонах, положение и ширина минизоны определяется конкретным типом сверхрешетки.

4.5 Исследование полупроводниковых сверхрешеток

В работах по исследованию полупроводниковых сверхрешеток значительное место занимают вопросы, связанные с изучением профиля сверхрешеточной структуры и совершенства границ гетеропереходов. Из структурных методов наибольшее распространение получили два: определение глубинного профиля концентраций элементов методом электронной оже-спектроскопии (ЭОС) в сочетании с ионным травлением и малоугловая дифракция рентгеновских лучей.

На рис. 8 представлен экспериментальный оже-профиль состава сверхрешеточной структуры [2,4], состоящей из чередующихся слоев GaAs и Al0,25Ga0,75As. Толщина каждого слоя составляла 5 нм. Точками на рисунке показаны экспериментальные значения величины x в формуле AlxGa1-xAs. Эти значения были вычислены из отношения интенсивностей оже-пиков Al (1390 эВ) и As (1228 эВ). Профиль концентрации Al получен последовательным стравливанием поверхностных слоев сверхрешеточной структуры ионами аргона с энергией 1,5 кэВ. Скорость травления составляла 0,3 – 1 нм/мин. Постепенное уменьшение амплитуды осцилляций величины x по мере травления связано с пространственным различием скоростей травления по площади сфокусированного первичного пучка электронов.

Рис. 8

Важные структурные характеристики мультислойных структур можно получить из результатов малоугловой дифракции рентгеновских лучей. Для рентгенограмм многослойных структур в области малых углов отражения рентгеновских лучей характерно наличие дополнительных рефлексов, обусловленные периодичностью сверхрешетки. Положения этих рефлексов связаны с периодом сверхрешетки d:


, (8)

здесь

- длина волны излучения, n – порядок отражения.

На рис. 9 представлена дифракционная картина в малоугловой области для сверхрешетки GaAs – AlAs, содержащей 6 периодов [2]. Точки на этом рисунке представляют экспериментальные результаты, сплошная кривая – результат теоретических расчетов для d = 12,72 нм. Экспериментальная и расчетная дифракционная картины согласуются не только по положению пиков, но и по интенсивности и ширине линий. Штриховая кривая соответствует теоретическим расчетам, при которых изменен период сверхрешетки всего на 0,28 нм, что соответствует изменению толщины всего на два атомных слоя. Отличие от экспериментальных результатов в этом случае существенно. Эти оценки свидетельствуют о возможности контроля этим методом совершенства границ и когерентности периодов с атомной точностью. В случае плавного изменения межплоскостного расстояния на границе между слоями сверхрешетки, кроме дополнительных рефлексов в малоугловой области наблюдаются сверхструктурные рефлексы (сателлитные отражения), сопровождающие основные рефлексы на рентгенограммах.

Рис. 9


Наличие дополнительных рефлексов в малоугловой области и отсутствие сверхструктурных рефлексов, сопровождающих основные дифракционные пики, свидетельствует о совершенстве границ раздела

Идея создания полупроводниковой сверхрешетки возникла в результате поиска новых приборов с отрицательным дифференциальным электросопротивлением. При наложении внешнего электрического поля по оси сверхрешетки электроны, ускоряясь, будут увеличивать абсолютные значения z-компоненты волнового вектора. Если длина свободного пробега электронов намного больше периода сверхрешетки, то электроны, не успев рассеяться, достигнут границ сверхрешеточной зоны Бриллюэна в точках

и
, где их эффективная масса отрицательная. В этом случае дрейфовая скорость электронов будет падать с ростом приложенного электрического поля, что соответствует отрицательному электросопротивлению. Впервые отрицательное электросопротивление было обнаружено в сверхрешетке GaAs – GaAlAs [1].

Еще один квантовый эффект наблюдается в полупроводниковых сверхрешетках при условии, что время рассеяния электронов достаточно велико [5]. При наложении к сверхрешетке внешнего электрического поля E электроны начнут совершать периодическое движение в минизоне, испытывая при этом брэгговское рассеяние на ее обеих границах. Частота осцилляций определяется выражением

.

Оптические измерения в сверхрешетках являются мощным средством изучения энергетического строения минизон, плотности состояний в них, совершенства гетерограниц и других физических характеристик сверхрешеток. Измерения оптического поглощения в сверхрешетках являются убедительным доказательством квантования энергетических уровней в этих структурах.


4.6 Применение сверхрешеток в электронике

Большую группу применения составляют оптоэлектронные приборы - фотоприемники, светоизлучающие приборы (инжекционные лазеры и светодиоды), пассивные оптические элементы, волноводы, модуляторы, направленные ответвители и др.

Инжекционные лазеры на гетеропереходах имеют преимущества перед обычными полупроводниковыми лазерами, поскольку инжектированные носители в лазерах на гетеропереходах сосредоточиваются в узкой области. Поэтому состояние инверсной населенности носителей заряда достигается при значительно меньших плотностях тока, чем в лазере на p-n-переходе. Применение вместо одиночных гетеропереходов многослойных сверхрешеточных структур позволяет изготовить лазеры, работающие на нескольких длинах волн.

В качестве примера на рис. 10 показано схематическое изображение структуры многоволнового лазера [6]. В структуре имеется четыре активных слоя AlxGa1-xAs разного состава (x = x1, x2, x3, x4), благодаря которым лазер одновременно работает на четырех длинах волн

1,
2,
3 и
4. Активные слои отделены друг от друга промежуточными слоями AlyGa1-yAs (y > x1, x2, x3, x4). Для создания p-n-переходов в структуре проводилась локальная диффузия Zn.

Рис. 10


Большую группу приборов на полупроводниковых сверхрешетках составляют устройства с отрицательным дифференциальным электросопротивлением. На основе полупроводниковых сверхрешеток изготавливают также различные транзисторы. Достаточно большая частота квантовых осцилляций электронов в сверхрешетках значительно расширяет возможности изготовленных на их основе приборов СВЧ.


Заключение

На основе предложенных в 1970 году Ж.И.Алфёровым и его сотрудниками идеальных переходов в многокомпонентных соединениях InGaAsP созданы полупроводниковые лазеры, работающие в существенно более широкой спектральной области, чем лазеры в системе AIGaAs. Они нашли широкое применение в качестве источников излучения в волоконно-оптических линиях связи повышенной дальности.

В России (впервые в мире) было организовано крупномасштабное производство гетероструктурных солнечных элементов для космических батарей. Одна из них, установленная в 1986 году на космической станции «Мир», проработала на орбите весь срок эксплуатации без существенного снижения мощности.

Прошло более 30 лет с тех пор, как началось изучение квантовых эффектов в полупроводниковых структурах. Были сделаны замечательные открытия в области физики низкоразмерного электронного газа, достигнуты поразительные успехи в технологии, построены новые электронные и оптоэлектронные приборы. И сегодня в физических лабораториях активно продолжаются работы, направленные на создание и исследование новых квантовых структур и приборов, которые станут элементами больших интегральных схем, способных с высокой скоростью перерабатывать и хранить огромные объемы информации. Возможно, что уже через несколько лет наступит эра квантовой полупроводниковой электроники.


Список литературы

1. Эсаки Л. Молекулярно-лучевая эпитаксия и развитие технологии полупроводниковых сверхрешеток и структур с квантовыми ямами.- В кн: Молекулярно-лучевая эпитаксия и гетероструктуры.: Пер. с англ./Под ред. Л. Ченга, К Плога.- М.: Мир, 1989.- с. 7 – 36.

2. Херман М. Полупроводниковые сверхрешетки.- М.: Мир, 1989.- 240 с.

3. Силин А.П. Полупроводниковые сверхрешетки // Успехи физических наук. – 1985. - т.147, вып. 3.- C. 485 - 521.

5. Бастар Г.. Расчет зонной структуры сверхрешеток методом огибающей функции.- В кн: Молекулярно-лучевая эпитаксия и гетероструктуры / Под ред. Л. Ченга, К. Плога.- М.: Мир, 1989.- С. 312 –347.

6. Цанг В.Т. Полупроводниковые лазеры и фотоприемники, полученные методом молекулярно-лучевой эпитаксии.- В кн: Молекулярно-лучевая эпитаксия и гетероструктуры / Под ред. Л. Ченга, К. Плога.- М.: Мир, 1989.- С. 463 –504.