Смекни!
smekni.com

Постійний електричний струм (стр. 2 из 2)

Прирівняємо праві сторони цих рівностей

. (10.3.3)

Але заряд dq можна виразити через струм І і час проходження струму dt, тобто

. (10.3.4)

Підставимо вираз (10.3.4) у (10.3.3) і після відповідного скорочення одержимо:

=
,

звідки

. (10.3.5)

Рівність (10.3.5) називається законом Ома для неоднорідної ділянки кола, тобто ділянки кола , яка містить електрорушійну силу джерела .

У випадку відсутності електрорушійної сили  у колі одержимо закон Ома для ділянки кола

. (10.3.6)

Якщо коло замкнуте, то 1- 2 = 0, тому що початкова й кінцева точки збігаються. У такому випадку одержимо закон Ома для замкнутого кола, тобто

. (10.3.7)

Закономірності (10.3.5), (10.3.6) і (10.3.7) називаються законами Ома в інтегральній формі. Ці закони мають широке практичне використання для розрахунку електричних кіл в електротехніці.

Розглянемо ділянку розгалуженого кола, яке складається з трьох неоднорідних ділянок АВ, ВС і СА (рис.10.4)

На цьому рисунку точки А,В,С називаються вузловими точками. В ці точки входять і виходять не менше трьох струмів. Для вузлових точок у відповідності із законом збереження електричних зарядів, має виконуватись умова, згідно з якою

. (10.3.8)

Рівність (10.3.8) називають першим правилом Кірхгофа. Суть цього правила така:

Алгебраїчна сума всіх струмів будь-якої вузлової точки розгалуження дорівнює нулю.

Рис.10.4

Запишемо закон Ома для кожної окремої неоднорідної ділянки кола (рис. 10.4):

, (10.3.9)

, (10.3.10)

. (10.3.11)

Зведемо рівності (10.3.9) – (10.3.11) до спільного знаменника й додамо їх

І1(R1+r1) + I2(R2+r2) + I3(R3+r3) = 1+ 2+ 3,

або

, (10.3.12)

де

- алгебраїчна сума всіх спадів напруг в замкнутому колі;
- алгебраїчна сума електрорушійних сил в цьому колі.

Рівність (10.3.12) називається другим правилом Кірхгофа. Правила Кірхгофа значно полегшують розрахунки розгалужених кіл і широко використовуються в електротехнічних дисциплінах.

4. Закони Ома й Джоуля-Ленца в диференціальній формі. Густина електричного струму в провіднику

Розглянемо елемент провідника перерізом S і довжиною

. Концентрація вільних електронів у такому провіднику дорівнює n (рис.10.5)

Рис.10.5

Нехай в такому елементі за допомогою сторонньої сили джерела  створений струм І. Величина струму в провіднику буде дорівнювати:

, (10.4.1)

де

- число зарядів у елементі провідника з об’ємом
; n – концентрація вільних електронів; qo – елементарний електричний заряд;
- середня швидкість направленого руху носіїв струму.

Розрахунки показують, що

наближено кілька міліметрів за секунду. Це дуже мала швидкість. Швидкість хаотичного руху електронів у металевому провіднику при звичайних умовах має порядок 106 м/с.

Густину струму провідності в провіднику легко знайти, поділивши (10.4.1) на переріз провідника S

. (10.4.2)

Розрахунки показують, що у кабелі з двох жил перерізом 1 мм2 безпечним є струм, який не перевищує величини (12,5  15)А. Якщо цей струм, а також концентрацію вільних носіїв струму, яка для більшості провідників не перевищує 1029 м-3 , підставити у формулу (10.4.2), то одержимо значення швидкості направленого руху електронів. Ця швидкість буде дорівнювати лише кілька міліметрів за секунду. В процесі направленого руху носії струму більшість часу перебувають у вузлах кристалічної решітки.

Знайдемо середню швидкість направленого руху носіїв струму у провіднику, які рухаються під дією сторонніх сил джерела струму.

Будемо вважати, що між двома сусідніми взаємодіями з вузлами кристалічної решітки носії струму рухаються з прискоренням a. Нехай між двома сусідніми взаємодіями кожен з електронів вільно рухається протягом часу . Перед взаємодією швидкість електрона досягає максимального значення max Вириваючись із вузла решітки швидкість електрона дорівнює нулю.

Тому середня швидкість направленого руху електрона між двома сусідніми взаємодіями буде дорівнювати

. (10.4.3)

Оскільки рух рівноприскорений, то

max = a.

Прискорення руху носіїв струму простіше знаходити із 2-го закону Ньютона, тобто

qоE = ma,

звідки

а =

.

Тому

max =

, (10.4.4)

де qo – елементарний заряд; Е – напруженість електричного поля у провіднику;  - час вільного руху між двома взаємодіями; m – маса електрона.

Підставимо (10.4.4) у (10.4.3), одержимо

. (10.4.5)

Значення середньої швидкості

підставимо у формулу (10.4.2), одержимо закон Ома у диференціальній формі

, (10.4.6)

де n – концентрація вільних носіїв струму у провіднику; q0 – величина елементарного заряду; τ – час вільного руху носіїв струму між двома сусідніми взаємодіями; m- маса носія струму у провіднику (у більшості випадків це маса електрона).

Величину  =

називають питомою електропровідністю провідника.

Знайдемо енергію, яка переноситься вільними електричними зарядами у провіднику одиничного об’єму, за одиницю часу, тобто

, (10.4.7)

де  - енергія, яка переноситься електронами одиниці об’єму провідника за одиницю часу.

Оцінити цю енергію можна так. За одиницю часу кожен з електронів захоплюється вузлами кристалічної гратки

разів, щоразу передаючи гратці кінетичну енергію
. Оскільки в одиниці об’єму провідника міститься n вільних електронів, то енергія, яка переноситься всіма електронами одиниці об’єму провідника за одиницю часу буде дорівнювати

, (10.4.8)

де n – концентрація вільних електронів у провіднику;

- число взаємодій кожного із електронів протягом 1с з вузлами кристалічної гратки провідника;
- кінетична енергія, яка щоразу передається кожним із електронів в процесі взаємодії з вузлами кристалічної гратки.

Підставивши в (10.4.8) значення max із (10.4.4), одержимо закон Джоуля-Ленца в диференціальній формі

, (10.4.9)