Смекни!
smekni.com

Потери электроэнергии в распределительных электрических сетях (стр. 3 из 8)

Потери во вторичной нагрузке ΔР2ТН зависят от класса точности ТН КТН. Причем, для трансформаторов напряжением 6-10 кВ эта зависимость линейная. При номинальной нагрузке для ТН данного класса напряжения ΔР2ТН ≈ 40 Вт. Однако на практике вторичные цепи ТН часто перегружаются, поэтому указанные значения необходимо умножать на коэффициент загрузки вторичной цепи ТН β2ТН. Учитывая вышеизложенное, суммарные потери электроэнергии в ТН и нагрузке его вторичной цепи определяют по формулам, тыс. кВт-ч:

. (1.9)

Потери в изоляции кабельных линий, которые определяют по формуле, кВтч:

, (1.10)

где bc - емкостная проводимость кабеля, Сим/км;

U - напряжение, кВ;

Lкаб - длина кабеля, км;

tgφ - тангенс угла диэлектрических потерь, определяемый по формуле:

, (1.11)

где Тсл - число лет эксплуатации кабеля;

аτ - коэффициент старения, учитывающий старение изоляции в течение

эксплуатации. Происходящее при этом увеличение тангенса угла

диэлектрических потерь отражается второй скобкой формулы.

1.4 Климатические потери электроэнергии

Корректировка с погодными условиями существует для большинства видов потерь. Уровень электропотребления, определяющий потоки мощности в ветвях и напряжение в узлах сети, существенно зависит от погодных условий. Сезонная динамика зримо проявляется в нагрузочных потерях, расходе электроэнергии на собственные нужды подстанций и недоучете электроэнергии. Но в этих случаях зависимость от погодных условий выражается в основном через один фактор - температуру воздуха.

Вместе с тем существуют составляющие потерь, значение которых определяется не столько температурой, сколько видом погоды. К ним прежде всего, следует отнести потери на корону, возникающую на проводах высоковольтных линий электропередачи из-за большой напряженности электрического поля на их поверхности. В качестве типовых видов погоды при расчете потерь на корону принято выделять хорошую погоду, сухой снег, дождь и изморозь (в порядке возрастания потерь).

При увлажнение загрязненного изолятора на его поверхности возникает проводящая среда, (электролит), что способствует существенному возрастанию тока утечки. Эти потери происходят в основном при влажной погоде (туман, роса, моросящие дожди). По данным статистики годовые потери электроэнергии в сетях АО-энерго из-за токов утечки по изоляторам ВЛ всех напряжений оказываются соизмеримыми с потерями на корону. При этом приблизительно половина их суммарного значения приходится на сети 35 кВ и ниже. Важно то, что и токи утечки, и потери на корону имеют чисто активный характер и поэтому являются прямой составляющей потерь электроэнергии.

Климатические потери включают:

Потери на корону. Потери на корону зависят от сечения провода и рабочего напряжения (чем меньше сечение и выше напряжение, тем больше удельная напряженность на поверхности провода и тем больше потери), конструкции фазы, протяженности линии, а также от погоды. Удельные потери при различных погодных условиях определяют на основании экспериментальных исследований. Потери от токов утечки по изоляторам воздушных линий. Минимальная длина пути тока утечки по изоляторам нормируется в зависимости от степени загрязненности атмосферы (СЗА). При этом приводимые в литературе данные о сопротивлениях изоляторов весьма разнородны и не привязаны к уровню СЗА.

Мощность, выделяющуюся на одном изоляторе, определяют по формуле, кВт:

, (1.11)

где Uиз - напряжение, приходящееся на изолятор, кВ;

Rиз - его сопротивление, кОм.

Потери электроэнергии, обусловленные токами утечки по изоляторам ВЛ, можно определить по формуле, тыс. кВт-ч:

, (1.12)

где Твл - продолжительность в расчетном периоде влажной погоды

(туман, роса и моросящие дожди);

Nгир - число гирлянд изоляторов.

Далее рассмотрим методы расчета потерь электроэнергии.

2. Методы расчета потерь электроэнергии

2.1 Методы расчета потерь электроэнергии для различных сетей

Точное определение потерь за интервал времени Т возможно при известных параметрах R и ΔРх и функций времени I (t) и U (t) на всем интервале. Параметры R и ΔРх обычно известны, и в расчетах их считают постоянными [2]. Но при этом сопротивление проводника зависит от температуры.

Информация о режимных параметрах I (t) и U (t) имеется обычно лишь для дней контрольных замеров. На большинстве подстанций без обслуживающего персонала они регистрируются 3 раза за контрольные сутки. Эта информация является неполной и ограничено достоверной, так как замеры проводятся аппаратурой с определенным классом точности и не одновременно на всех подстанциях.

В зависимости от полноты информации о нагрузках элементов сети для расчетов нагрузочных потерь могут использоваться следующие методы:

Методы поэлементных расчетов, использующие формулу:

, (2.1)

где k - число элементов сети;

Iij - токовая нагрузка i-го элемента сопротивлением Ri в

момент времени j;

Δt - периодичность опроса датчиков, фиксирующих

токовые нагрузки элементов.

Методы характерных режимов, использующие формулу:

, (2.2)

где ΔРi - нагрузочные потери мощности в сети в i-м режиме

продолжительностью ti часов;

n - число режимов.

Методы характерных суток, использующие формулу:

, (2.3)

где m - число характерных суток, потери электроэнергии за каждые из которых, рассчитанные по известным графикам нагрузки

в узлах сети, составляют ΔWнci,

Дэкi - эквивалентная продолжительность в году i-го характерного

графика (число суток).

4. Методы числа часов наибольших потерь τ, использующие формулу:

, (2.4)

где ΔРmax - потери мощности в режиме максимальной нагрузки сети.

5. Методы средних нагрузок, использующие формулу:

, (2.5)

где ΔРсp - потери мощности в сети при средних нагрузках узлов

(или в сети в целом) за время Т;

kф - коэффициент формы графика мощности или тока.

6. Статистические методы, использующие регрессионные зависимости потерь электроэнергии от обобщенных характеристик схем и режимов электрических сетей.

Методы 1-5 предусматривают проведение электрических расчетов сетипри заданных значениях параметров схемы и нагрузок. Иначе их называют схемотехническими [2].

При использовании статистических методов потери электроэнергии рассчитывают на основе устойчивых статистических зависимостей потерь от обобщенных параметров сети, например суммарной нагрузки, суммарной длины линий, числа подстанций и т.п. Сами же зависимости получают им основе статистической обработки определенного количества схемотехнических расчетов, для каждого из которых известны рассчитанное значение потерь и значения факторов, связь потерь с которыми устанавливается.

Статистические методы не позволяют наметить конкретные мероприятия по снижению потерь. Их используют для оценки суммарных потерь в сети. Но при этом, примененные к множеству объектов, например линий 6-10 кВ, позволяют с большой вероятностью выявить те из них, в которых находятся места с повышенными потерями [2]. Это дает возможность сильно сократить объем схемотехнических расчетов, а следовательно, и уменьшить трудозатраты на их проведение.

При проведении схемотехнических расчетов ряд исходных данных и результаты расчетов могут представляться в вероятностной форме, например в виде математических ожиданий и дисперсий. В этих случаях применяется аппарат теории вероятностей, поэтому эти методы называются вероятностными схемотехническими методами [4].

Для определения τ и kф, используемых в методах 4 и 5, существует ряд формул. Наиболее приемлемыми для практических расчетов являются следующие:

; (2.6)

, (2.7)

где kз - коэффициент заполнения графика, равный относительному числу часов использования максимальной нагрузки.

По особенностям схем и режимов электрических сетей и информационной обеспеченности расчетов выделяют пять групп сетей, расчет потерь электроэнергии в которых производят различными методами [1]:

транзитные электрические сети 220 кВ и выше (межсистемные связи), через которые осуществляется обмен мощностью между энергосистемами.

Для транзитных электрических сетей характерно наличие нагрузок, переменных по значению, а часто и по знаку (реверсивные потоки мощности). Параметры режимов этих сетей обычно измеряются ежечасно.