Регулювання вихідної напруги здійснюється за допомогою резистора R5, який змінює частоту контролера на мікросхемі DA1. Для забезпечення безпеки роботи пристрою передбачений захист від зникнення однієї з фаз, зібраний на стабілітроні VD20, транзисторі VT5 і оптоелектронной збірки VU6. При зникненні однієї з фаз величина випрямленої напруги падає до 420 В і стабілітрон VD20 закривається, що приводить до закриваннятранзисторуVT5, який вимикає оптотранзістор VU6, який припиняє подачу імпульсів, що управляютьпереривником на транзисторі VT4. Пристрій не включиться до тих пір, доки не будуть присутні а всі трифази, спостерігати за наявністю або відсутністюфаз можна за допомогою індикаторівHL1, HL2, HL3, розташованихна передній панелі.
Робота схем захисту від перевищення напруги на транзисторах мостового перетворювача.Схемазахисту від перевищення напруги на транзисторах мостового перетворювачазібрана настабілітроніVD32, транзисторі VT10, і оптотиристоріVU5. Працює вона таким чином: регульована задопомогою переривника вихідна напруга,на транзисторах мостового перетворювача, через резистивний дільник R57, R58, R63, R64 і діод VD31 подаєтьсяна вхід схеми захисту. При збільшенні величини напруги понад 400 Ввідбувається пробій стабілітронуVD32, що призводить до відкриття транзисторуVT10,який в свою чергу призводить доспрацюванняоптотиристоруVU5, що призводить дозакриттятранзисторуVT2. При цьому транзистор VT2 забороняє роботу випрямного мосту. Для повернення пристрою до робочого станунеобхідно вимкнути і знову ввімкнути вимикач S1.
При перевищенні струмом рівня 50 Адатчик струмуВ1вимикає мікросхему DA1 - контролер управління переривником на транзисторі VT9. Транзистор VT9закривається і знімає напруга з мостового перетворювача.
Для забезпечення живлення мікросхем управління переривником і драйверами мостового перетворювача передбаченінизьковольтні джерела живлення, ізольовані від спільної шиниживлення. Організація цих джерел живлення здійснюється за допомогою зворотноходового перетворювача, реалізованогона мікросхемах DA10 таDA11 і трансформаторіТ2.
Схема електрична принципова приведена на кресленні АП-14Б.08.000.Э3 .
4 ВИБІР ЕЛЕМЕНТНОЇ БАЗИ
Потужне джерело здійснює живлення від промислової мережі змінної напруги 380 В 50 Гц. Пристрій призначений для роботи в несприятливихумовах експлуатації, вказаних в технічному завданні. Враховуючи всевище перераховане вибиратимемо елементну базу.
4.1 Вибір мікросхем
У зв'язку з тим, що при роботі пристрою виникають великі електромагнітні перешкоди, а також кидки струму,для управління пристроєм переривника,вибираємо мікросхему типуUС3842, оскільки вона має внутрішній захист від різких перепадів напруги і розроблена спеціально для роботи в імпульсних джерелах живлення.Для управління мостовою схемою перетворювача постійної напруги в зміннувикористаємо мікросхему типуUС3875 фірми TI. Ця мікросхема призначена для управлінням мостовими перетворювачами, вона також має внутрішній захист від кидків струму і напруги, їїробоча частота сягає1 MГц і цього цілком достатньо для мостового перетворювача, який працює з частотою 25 кГц. Ці мікросхеми мають низькунапругуживлення і мале енергоспоживання, вихідні каскади ціхмікросхем дозволяють управляти навантаженням до 2 А.
Для забезпечення розв'язки живлення цих мікросхем від високої перетворюваної напруги, яка живить транзистори переривника і мостового перетворювача, вибираємо оптоелектронірозв'язки типуHCPL3150 і IR2113, що мають високий опір між входом і виходом – до 3 Мом. Вихід цих мікросхем дозволяє управляти пристроями вхідні ланцюги яких споживають струм до 2 А, що нас влаштовує.
Для реалізаціїпристрою управлінняплавним запускомвикористаємо таймер на мікросхемі типу NE555. основна гідність цієї мікросхеми, це те, що час затримки включення не залежить від рівнянапруги джерела живлення і може бути легко виставленийна необхідний.
Для здійснення подвійного перетвореннянапруги, необхідноїдляживленнямікросхем, в джерелі живлення застосуємо мікросхему IR2151S, призначену для управління напівмостовим перетворювачем.Як стабілізатори низьковольтної напруги використаємо мікросхеми типу L7805CV, L7812CV, L7809CV, L7818CV.
В якостірозв'язкинизьковольтового ланцюга управління тиристорами моста випрямляча, що випрямляють високу напругу, застосоуємо оптоелектронірозв'язки на мікросхемах типуМOC3083.
4.2 Вибір елементів трифазного випрямляча
Як випрямні елементи для трифазного випрямляча використаємо діод – тиристорні зборкитипуMDT-40-10, що задовольняють нашим вимогам до випрямляча. Для плавного пуску використаємо тиристор типуBT151.
4.3 Вибір діодів
Для реалізації однофазних випрямлячів, застосованих в блоці живлення, використаємо діоди типу 1N 4007.
Діоди типу КД 521 застосовані в схемі захисту. Їх вистачає для роботи в слабкострумових ланцюгах живлення.
Іншідіоди використанів пристрої типу1N4007. Ці діоди мають високу надiйнiсть і низьку вартість, вони задовольняють нашим вимогам.
4.4 Вибір стабілітронів
Стабілітрони типу BZV55-C18 застосовуються в ланцюгах управління мостовим перетворювачем, фірма виробник транзисторів рекомендує застосовувати стабілітронисамецього типу в ланцюгах управліннямостовимиперетворювачами.
Для реалізації схем захисту вибираємо стабілітрон типу КС 156, що повністю задовольняє нашим вимогам.
4.5 Вибір транзисторів
Транзистори типу КТ 315Б вживаний для управління схемою плавного пуску і для схем захисту. Ці транзистори мають високу надёжность і малу вартість.
Транзистори мостового перетворювача вибираємо типу50MT060WH, а транзистор переривникатипуG4PF50WD, виходячи з того що на частоті 25 кГц ці транзистори можуть працювати на струмах до 70 А.
4.6 Вибір конденсаторів.
Виходячи з технічних умов і надійності, як високовольтні конденсатори застосуємо конденсатори типу К78-2, що мають малі струми витоку і що працюють при низькій температурі.
Як конденсатори фільтру основноїнапруги живленнявикористаємо конденсатори типу К50-27.
Для згладжування пульсацій в низьковольтних джерелах живлення використаємо конденсатори тіпуК50-35.Як конденсатори фільтру в низьковольтних джерелах живлення використаємо конденсатори типу КМ4.
Внизьковольтних джерелах живлення і ланцюгах управління застосовуємо конденсатори типу КМ5.
Ці конденсатори використаємо виходячи з того, що у них низькі струми витоку і широкий температурний діапазон,а також низька вартість.
4.7 Вибір резисторів
Як обмежуючий резистор для пристрою поступовогозаряду конденсаторів фільтру застосуємо резистор типу ПЭВ-10.
В якості підстроєчних вибираємо резистори типуСП3-19А.
Регулювальні резистори виберемо типуРП1-74.
Іншірезистори вибираємо резистори типуС2-29 різної потужності.
Ці резистори мають широке поширення, низьку вартість і задовольняють нашим вимогам.
4.8 Вибір трансформаторів
Вихідний трансформатор виготовляється в лабораторних умовах по виконаних розрахунках.
Як трансформатор гальванічної розв'язки джерел живлення від мережі використаємо стандартний трансформатор типуТПП-261-220-50, що має вихіднінапругиживлення співпадаючі з напругами потрібними для нашого пристрою.
У джерелі подвійного перетворювача використаємо стандартний трансформатор типу МІТ-12В.
4.9 Вибір оптопар
Для реалізації пристрою захисту візьмемо оптопару діод - тиристор типу АОУ101Аі діод – транзисторну оптопарутипуPС817.
4.10 Вибiр пристроїв індикації
В якості індикаторів роботи джерел живлення візьмемо світлодіоди зеленого кольору типу АЛ 307Б, в якості індикаторів наявності фаз живлячої мережі візьмемо світлодіоди червоного кольору типу ПБК 129.
Як пристрій індикації рівнявихідного струму і напруги використаємоАЦП типу ,котре має вбудований дешифратор і прямий вихід на РКІ.
4.11 Вибiр пристроїв охолодження
Візьмемо вентилятор типу KD12PTS, продуктивності якого вистачає для охолодження силових елементів.
4.12 Вибір запобіжників
Для захисту джерел живлення при виникненні аварійної ситуації використаємо не відновлювані запобіжники типу ВП2Т-1Ш, розраховані на роботу до 2 А.
4.13 Вибір автоматичного вимикача
Як пристрій ввімкненняі вимиканняживлення мережі використаємо автоматичний вимикач типу АЭ2043М-10-00У3-А, що має тепловий і струмовий захист.
4.14 Вибір роз'єднань
Як вихідні роз'єднаннявикористаємо роз'єднаннятипу K375Jрозраховані на напругу до 600 В і струм до 200 А.
4.15Вибiр клемника
Візьмемо клемник типу X977YT04 розрахований на напругу 500 В і струм до 150 А.
5 РОЗРАХУНКОВА ЧАСТИНА
5.1 Методика розрахунку тепловідводу
Існує три способи поширення тепла: конвективний, за допомогою випромінювання і кондуктівий.
5.1.1 Конвекція
Конвективний теплообмін між твердим тілом і газоподібною (рідкою) середою в спільному випадку підкоряється закону Ньютона-ріхмана:
де Р— теплова потужність втрат, яку радіатор повинен розсіяти в навколишньому просторі;
Ss — ефективнаплощаповерхні радіатора;
Ts — температура радіатора;
Та — температура навколишнього середовища;
ак — коефіцієнт конвективного теплообміну між радіатором і
середою.
Конвективна складова теплообміну в значній мірі залежить від того, яка конструкція радіатору, яким чином розташований радіатор в пристрої, чи обдувається він примусово. У таблиці 5.1 приводяться розрахункові формули коефіцієнта теплообміну для найбільш поширених на практиці випадків[7].