Смекни!
smekni.com

Принцип действия ваккумных ламп с управлением током (стр. 2 из 2)

(17)

Усиление по мощности максимально, когда достигает максимума величина Rа/(Rа + Ri)2, т. е. при Ri = Ra. При этом условии из уравнения (4.17) имеем:

(17a)

Итак, большое усиление по мощности имеет место при Ri=Raи при использовании ламп с малой прони­цаемостью и с большой крутизной. Отношение S/D, таким образом, определяет величину коэффициента уси­ления по мощности (к. п. д. усилителей мощности).

Баланс мощности при усилении.Мощность РR,выде­ляемая на нагрузочном анодном сопротивлении Raуси­лительной схемы, складывается из постоянной и пере­менной частей:

PR=(Ia+dIa)2Ra=I2aRa+(dIa)2Ra (18)

(2dIaRa=0, так как dIa при усреднении дает нуль). Мощность Ра, подводимая к аноду лампы, равна:

Ра = (Uа-dUa) (Ia + dIa) =UaIa+ dUadIa =

= UaIa-(dIa)2Ra (4.19)

(Среднее от dUaIa и dIaUa равно нулю, так как dUa и dIa при усреднении за период дают нуль.) Из уравнения (112) следует, что мощность рассеяния на аноде (по постоянному току) UaIa при наличии управляющего на­пряжения уменьшается на величину (dIa)zRa, являю­щуюся, таким образом, полезной выходной мощностью усилителя [уравнение (18)]. Следовательно, преобразо­вание мощности в усилителе происходит за счет мощно­сти рассеяния усилительной лампы (по постоянному току).

Недостатками триода являются относительно малое усиление (mu<l/D), которое, кроме того, ограничено сильным влиянием поля анода на поле в пространстве катод — сетка; относительно малое внутреннее сопротив­ление (порядка 10 кОм) и склонность к самовозбужде­нию через анодно-сеточную емкость Са.с. Эти недостатки устранены в тетродах и в их дальнейшем усовершенство­вании — пентодах.

3. Тетрод (лампа с двумя сетками)

Эта лампа содержит вторую сетку, которая может располагаться либо между управляющей сеткой и като­дом (сетка пространственного заряда или катодная сет­ка), либо между управляющей сеткой и анодом (экра­нирующая сетка). Наиболее часто используются тетро­ды с экранирующей сеткой (рис. 4.13,а), обладающие очень малыми значениями Са.с и D (D — проницаемость лампы).

Рис. 4. Расположение электродов (а) и типичные ха­рактеристики тетрода (б).

1 — вторичные электроны переходят с экранирующей сетки на анод; 2 — ход характеристики без учета вторичной эмиссии; 3 — вторичные электроны переходят с анода на экранирующую сетку.

Электродную систему тетрода, как и триод ну ю, можно свести к эквивалентной диодной системе. По ана­логии с уравнением (6) уравнение статической харак­теристики тетрода имеет вид:

Ik=K(Uc+Dэ.c.Uэ.с.+DaUa)3/2 , (22)

где .Da.c — проницаемость управляющей сетки (для поля экранирующей сетки); Da — проницаемость лампы (для поля анода) и Uэ.с. — напряжение экранирующей сетки. Вместо Iа в уравнения (4.6) в данном случае входит ток катода Iк в плоскости управляющей сетки, часть которо­го ответвляется на (положительную) экранирующую сет­ку, а другая большая часть — на анод (токораспределение). Таким образом, экранирующая сетка действует на катодный ток как «притягивающий» электрод.

На рис.4,б показана типичная форма анодной (Ia—Ua) и сеточно-анодной (Iэ.с—Ua) характеристик тетрода. Обе характеристики расположены симметрично относительно друг друга и имеют излом при Ua<Uэ.с [вопреки уравнению (4.22)]. Наличие излома связано с появлением вторичных электронов, которые выбивают­ся первичными электронами (создающими анодный ток) из анода и попадают на более положительную экрани­рующую сетку (динатронный эффект). При этом ток экранирующей сетки возрастает па величину тока вто­ричной электронной эмиссии, а ток анода соответственно уменьшается. При Uа>Uэ.с. наоборот, вторичные элек­троны с экранирующей сетки попадают па более поло­жительный анод. В этой области благодаря экранирую­щему действию обеих сеток триода характеристика име­ет почти горизонтальный ход (т. е. Iа почти не зависит от Ua).

Из-за излома характеристики область управления тетродом лежит при Uа>Uэ.с.. Этот недостаток можно устранить, вводя третью (защитную или антидинатронную) сетку, ликвидирующую обмен вторичными электро­нами между экранирующей сеткой и анодом. Лампы с тремя сетками (с пятью электродами) носят название пентодов.

4. Пентод (лампа с тремя сетками)

Вредный эффект обмена вторичными электронами устранен в пентоде за счет того, что защитная сетка со­единяется с катодом п, следовательно, имеет нулевой потенциал (Uб=0, рис. 4.5,а). Поэтому статическое уравнение характеристики пентода совпадает с уравне­нием (4.22). Однако поскольку из-за сильного экрани­рующего действия третьей пентодной сетки Da<<Dэ.с., т.е. DaUa<< Dэ.сUэ.с то для пентода приближенно имеем:

IK = K(Uc + Dэ.сUэ.с)3/2. (23)

Следовательно, анодный ток пентода Iа = Iк—Iс
практически не зависит от Ua(насыщение характеристик семейства Ia-Ua, рис. 4.5,б), за исключением случая Ua<<Uэ.с (перехват тока экранирующей сеткой).

Пентоды характеризуются очень малым влиянием анодного напряжения на ток катода (проницаемость лампы Da<<l%) и высоким внутренним сопротивлением Ri (порядка нескольких мегаOм; вследствие горизонталь­ного хода анодных характеристик Iа—Uа). Поскольку обычно Ri>>Ra, то коэффициент усиления пентода по напряжению согласно уравнению (4.16) равен (D=Da):

Рис. 5. Расположение электродов (а) и типичное семейство харак­теристик (б) пентода.

(24)

При Ra®¥ согласно уравнению (16) получаем, что mu=mumax=1/Dа. На практике максимальный коэффициент усиления меньше l/Da (примерно 103), так как при больших амплитудах переменного анодного напряжения(полуволне анодный ток мо­жет на время прерываться, что вызывает значительные искажения выходного сигнала.

4.1.5. Гексоды, гептоды, октоды (лампы с четырьмя, пятью и шестью сетками)

Эти лампы имеют по две(находящихся под отрицательным потенциалом) управляющие сетки, которые могут независимо друг от друга влиять на ток катода(двойное управление). В радиотехнике они обычно используются как смесительные лампы .

ЛИТЕРАТУРА

1. Мирошников М.М. Теоретические основы оптико-электронных приборов: учебное пособие для приборостроительных вузов. -- 2-е издание, перераб. и доп.—Л.: Машиностроение, Ленингр. отделение, 1983 -- 696 с.

2. Порфирьев Л.Ф. Теория оптико-электронных приборов и систем: учебное пособие.—Л.: Машиностроение, Ленинградское отделение. 1980 -- 272 с.

3. Кноль М., Эйхмейер И. Техническая электроника, т. 1. Физические основы электроники. Вакуумная техника.—М.: Энергия, 1971.

4. Яворский Б.М., Детлаф А.А. Справочник по физике.—М., Наука, 1978 -- 944 с.

5. Сивухин Д.В. Общий курс физики. Оптика.—М.: Наука, 1980 -- 752 с.

6. Зи С. Физика полупроводниковых приборов. В 2-х кн.—М.: Мир, 1984.

7. Достанко А.П. Технология интегральных схем.—Мн: Вышэйшая школа, 1982 -- 206 с.