Реферат
по физике
на тему:
«Проблемы новых источников энергии»
Проблема непосредственного использования световой энергии Солнца
Как известно, современная техника использует лишь те запасы солнечной энергии, которые фиксируют зеленые листья растений или стекающие вниз воды, которые Солнце испарило и потом в виде дождя и снега перенесло на более высокий уровень. Оба эти естественных процесса крайне невыгодны с энергетической точки зрения. Растения используют лишь несколько процентов (от 1 до 6%) падающей на них солнечной энергии и этим вполне разрешают ту задачу, которая приходится на их долю в том цикле преобразования энергии и материи, которым определяется жизнь земной коры. Что энергетическая задача может быть решена значительно полнее, показывают красные водоросли, живущие на глубинах при слабом освещении и использующие 20–25% падающей на них световой энергии. Некоторые фотохимические реакции, изученные в лабораторных условиях, дают цифры гораздо более высокие (до 80%) По сравнению с этими данными обычная для растений степень использования энергии (1%) явно не должна нас удовлетворять.
Не лучше обстоит дело и с водными источниками. Солнечная энергия испаряет воду, затрачивая по 600 кал на 1 кг, и, сверх того, поднимает этот пар на высоту 1–2 км, где он конденсируется в облако. На этот подъем затрачивается 1000 кГм, или около 2 кал. В большинстве наших гидротехнических установок (Днепрострой, Волховстрой, Свирьстрой) мы используем один-два десятка метров падения, т.е. меньше 0.1 кал на 1 кг воды. На 1 кг воды Солнце затрачивает 602 кал почти полноценной энергии, способной 95%, т.е. 570 кал, превратить в механическую энергию. На наших гидротехнических сооружениях мы получаем около 0.05 кал. Таким образом, коэффициент использования равен всего 0.0001.
Может показаться, что хотя солнечной энергии много, но она так рассеяна, что только на необозримых просторах лесов и морей может дать технически важные результаты, что те поверхности, с которых мы могли бы собирать солнечную энергию искусственными приемами, слишком ничтожны. Но это неверно. Каждый квадратный метр поверхности, поставленный перпендикулярно солнечным лучам, получает около 1 кВт энергии. Крыши большого города получают от 10 до 100 млн кВт. Если бы мы умели получать 1–2% этой энергии, то имели бы бестопливный фонд от 100000 до 2000000 кВт, покрывающий всю потребность в электроэнергии.
Какими же средствами мы располагаем уже в данный момент непосредственного использования солнечной энергии? Помимо фотохимических реакций, которые, вероятно, сделаются основным источником энергии в будущем, но сейчас еще мало применимы, рассмотрим три типа солнечных устройств: тепловой, термоэлектрический и фотоэлектрический.
Нагревание, вызываемое Солнцем, весьма велико. Пески Кара-Кума нагреваются до 80 °С, несмотря на сравнительно слабое поглощение солнечных лучей и значительную потерю энергии через лучеиспускание. Основным приемом более значительного накопления солнечного тепла являются стеклянные покрытия парников и теплиц. Стекло обладает счастливым свойством: будучи чрезвычайно прозрачным для главной массы солнечных лучей, оно задерживает лучи больших длин волн, излучаемые слабо нагретой Почвой и растениями. Подбор наилучших в этом отношении сортов стекла, лаков и красок значительно улучшит результаты. Еще большего можно ожидать от целесообразного подбора газов. О значении их можно судить по роли углекислоты в энергетике земного покрова. Если бы вместо 0.04 °/о углекислоты в воздухе мы имели лишь 0.01%, то температура земной поверхности упала бы ниже 0° и замерзли бы все моря. Наоборот, при 0.4% вся вода испарилась бы. Ничтожные примеси некоторых ароматических органических веществ в десятки и сотни раз повышают поглощение инфракрасных лучей в воздухе. Ни одно из этих имеющихся в наших руках средств для регулирования поглощения и испускания лучистой энергии нами не использовано и даже не изучено. А между тем первые же опыты использования стеклянных перекрытий дали температуру в 140° и даже 240 °С. Температуры, которые достигаются в таких помещениях, покрытых одним или несколькими слоями стекол, зависят не только от свойств стекла, но и от потери тепла остальными стенками. Если бы эти стенки граничили с водой или воздухом, уже сначала сильно подогретыми Солнцем, то температура в закрытом ящике была бы выше. Многоступенчатое устройство, в котором нагретый воздух окружал бы ящик, нагреваемый Солнцем, а полученная более высокая температура была бы использована для обогрева следующего внутреннего ящика, в свою очередь нагреваемого Солнцем, и т.д., помогло бы достичь значительно более высоких температур. Этот принцип часто применяется в физике, в технике как низких, так и высоких температур.
Другой метод – регенерации – также мог бы быть широко применен. Если, например, солнечное тепло затрачивается на опреснение воды путем перегонки, то выделяемая при конденсации теплота должна быть использована на подогрев и испарение морской воды. Солнце же должно добавлять лишь такое количество энергии, которое необходимо, чтобы быстро испарять морскую воду при более высокой температуре, чем температура конденсации пресной воды. Другой пример – испарение воды из резервуаров, нагретых Солнцем в жаркие дни, и конденсация пара на холодном стекле в холодные ночи. Наконец, для получения высоких температур можно концентрировать солнечные лучи зеркалами.
Целесообразным использованием указанных средств можно разрешить целый ряд технических задач, существенно влияющих на энергетический баланс. Можно строить парники и теплицы без применения топлива. Можно опреснять морскую воду с достаточно выгодными экономическими показателями. Можно иметь горячую воду для бытовых целей – варки пищи, бань, прачечных и т.п. Можно сушить овощи, выплавлять серу и соли. Можно, наконец, строить котлы и двигатели для орошения и т.п. Технические трудности, которые пришлось бы здесь преодолеть, нисколько не большие, чем в любом новом строительстве. Техническая проработка всех этих устройств, проверенная на опытных установках, дала бы твердые основания для внесения солнечной энергии в энергетический баланс южных республик и областей Союза. Экономическая целесообразность определится почти исключительно стоимостью затрат на установку; расходы эксплуатации ничтожны, энергия же даровая. Величина коэффициента использования солнечной энергии также не играет существенной роли, так как дело сводится к использованию больших или меньших поверхностей для собирания солнечной энергии.
С точки зрения экономической целесообразности для использования солнечной энергии могут оказаться вполне пригодными те приемы, которые отвергаются нами для топливных ресурсов. Например, термоэлементы, совершенно непригодные для тепловых станций вследствие своего низкого коэффициента полезного действия, могут оказаться вполне удовлетворительными для солнечных установок благодаря дешевизне и отсутствию ухода.
Рассмотрим для примера следующий случай. Крыша дома сделана наподобие китайских вогнутой и покрыта белой жестью. Вдоль всей крыши на стойках расположен желоб вогнутостью по направлению к крыше; желоб покрыт слоем термоэлектрически активного по отношению к желобу вещества, которое сверху покрыто также металлом. Желоб и внешнее покрытие, между которыми помещено данное вещество, служат электродами термоэлектрической батареи. Рассчитаем два варианта устройства термобатареи: из металлов и из полупроводников. Будем считать, что благодаря концентрации солнечных лучей крышей на 1 ом2 поверхности желоба падает 0.2 кал/с, тогда как на поверхность крыши приходится около 0.02 кал/с. Толщину слоя примем в 5 см для металла и 2 см – для полупроводника, а теплопроводность металла 0.01, а полупроводника 0.004. Тогда разность температур, которая установится на термобатарее, будет составлять для металла 100°, а для полупроводника 200°. При этом на металлическом термоэлементе можно получить около 5 мВ, на полупроводнике – около 0.1 В. Считая, что удельное сопротивление металла 0.001 Ома, а полупроводника 2 Ома, мы получили бы для энергии, которую можно получить от батареи, 25 Вт с 1 м2, т.е. до 2.5% падающей энергии. В действительности, если ограничить свою задачу лишь дешевыми металлами, получение энергии будет вдвое меньше, но и этого, как видно из приведенных данных, достаточно для электрификации того дома, который покрыт такой термоэлектрической крышей. Металлы и полупроводники выгодно делать губчатыми, рыхлыми. Сибирский изобретатель Потанин и проф. Власов предложили способ регенерации теплоты в термоэлементах, который мог бы почти вдвое повысить использование солнечной теплоты. Таким образом, и термоэлемент как метод использования солнечной энергии дает вполне пригодные экономические результаты.
Третий путь – фотоэлемент – еще не достиг такого состояния, чтобы служить для использования солнечной энергии, поскольку его кпд составляет лишь сотые или тысячные доли процента. Но здесь ясно, каким способом он может быть улучшен. Современный фотоэлемент представляет собою либо медную пластинку, покрытую закисью меди, либо железный лист, покрытый слоем селена, с прозрачным или сетчатым верхним электродом. Свет гонит поток электронов из закиси меди или селена в металл, создавая между ними определенную разность потенциалов благодаря находящейся между ними тонкой проводящей прослойке. Но при том способе получения прослойки, которым пользуются в технике, она получается не сплошной. В отдельных многочисленных местах селен и металл непосредственно касаются друг друга, и через эти контакты из металла обратно уходит главная часть электронов, переносимых в металл светом. Мы как бы носим воду в решете: на нем остается несколько капель. Можно думать, что, создав искусственно и в фотоэлементах сплошные прослойки, обеспечим гораздо более высокие свойства фотоэлемента. Опыт подтверждает эти соображения и позволяет ожидать, что повышение кпд до 1–2% достижимо. А тогда фотоэлементы получат преимущество перед термоэлементами, так как они не требуют концентрации энергии и могут быть нанесены гораздо более тонкими слоями (десятые доли миллиметра вместо сантиметров).