Реферат
по дисциплине "Электротехника"
на тему: "Проводники, полупроводники и диэлектрики"
Курчатов 2008
Содержание
Введение
1. Проводниковые материалы
1.1. Общие сведения
1.2. Медь
1.3. Латуни
1.4. Проводниковые бронзы
1.5. Алюминий
2. Полупроводники. Полупроводниковые приборы
2.1. Общие сведения
2.2. Полупроводниковые диоды
2.3. Тиристоры
3. Электроизоляционные материалы
3.1. Основные определения и классификация диэлектриков
3.2. Характеристики электроизоляционных материалов
Заключение
Список литературы
Введение
В зависимости от характера действия на тела электрического поля их можно разделить на проводники, диэлектрики и полупроводники. Свойства тел и поведение их в электрическом поле определяются строением и расположением атомов в телах. В состав атомов входят электрически заряженные частицы: положительные – протоны, отрицательные – электроны. В нормальном состоянии атом электрически нейтрален, так как число протонов, входящих в состав ядра атома, равно числу электронов, вращающихся вокруг ядра и образующих «электронные оболочки» атома. Электроны внешней валентной оболочки определяют электропроводность вещества. Энергетические уровни внешних валентных электронов образуют валентную, или заполненную зону. В этой зоне электроны находятся в устойчивом связанном состоянии. Чтобы освободить какой-либо электрон этой зоны, необходимо затратить некоторую энергию. Следовательно, электроны, находящиеся в свободном состоянии, занимают более высокие энергетические уровни. Зона более высоких энергетических уровней, расположенная выше валентной зоны и отделенная от нее запрещенной зоной, объединяет незаполненные, или свободные, энергетические уровни и называется зоной проводимости или зоной возбуждения. Чтобы электрон перенести из валентной зоны в зону проводимости, необходимо ему сообщить извне энергию. Ширина запретной зоны, которую должен преодолеть электрон, чтобы перейти из устойчивого состояния в свободное состояние (в зону проводимости), является одним из главных критериев разделения тел на проводники, полупроводники и диэлектрики.
1. Проводниковые материалы
1.1. Общие сведения
В качестве проводников электрического тока могут быть использованы как твердые тела, так и жидкости, а при соответствующих условиях и газы. К проводниковым материалам в электротехнике относятся металлы, их сплавы, контактные металлокерамические композиции и электротехнический уголь. Важнейшими практически применяемыми в электротехнике твердыми проводниковыми материалами являются металлы и их сплавы, характеризующиеся электронной проводимостью; основной параметр для них – удельное электрическое сопротивление в функции температуры.
Диапазон удельных сопротивлений металлических проводников весьма узок и составляет от 0,016 мкОм٠м для серебра до 1,6 мкОм٠м для жаростойких железохромоалюминиевых сплавов. Электрическое сопротивление графита с увеличением температуры проходит через минимум с последующим постепенным повышением.
По роду применения проводниковые материалы подразделяются на группы:
проводники с высокой проводимостью – металлы для проводов линий электропередачи и для изготовления кабелей, обмоточных и монтажных проводов для обмоток трансформаторов, электрических машин, аппаратуры и пр.;
конструкционные материалы – бронзы, латуни, алюминиевые сплавы и т.д., применяемые для изготовления различных токоведущих частей;
сплавы высокого сопротивления – предназначаемые для изготовления дополнительных сопротивлений к измерительным приборам, образцовых сопротивлений и магазинов сопротивлений, реостатов и элементов нагревательных приборов, а также сплавы для термопар, компенсационных проводов и т.п.;
контактные материалы – применяемые для пар неразъемных, разрывных и скользящих контактов;
материалы для пайки всех видов проводниковых материалов.
Механизм прохождения тока в металлах обусловлен движением (дрейфом) свободных электронов под воздействием электрического поля; поэтому металлы называют проводниками с электронной электропроводностью или проводниками первого рода.
Электрическое сопротивление проводников
Электрическое сопротивление обусловлено тем, что свободные электроны при дрейфе взаимодействуют с положительными ионами кристаллической решетки металла. При повышении температуры учащаются соударения электронов с ионами, поэтому сопротивление проводников зависит от температуры. Сопротивление проводников зависит от материала проводника, т.е. строение его кристаллической решетки. Для однородного цилиндрического проводника длиной l и площадью поперечного сечения S сопротивление определяется по формуле
R = ρ٠l/S(1.)
где ρ=RS/l – удельное сопротивление проводника (сопротивление однородного цилиндрического проводника, имеющего единичную длину и единичную площадь поперечного сечения).
Единица сопротивления – Ом.
1 Ом: Ом – сопротивление проводника, по которому при напряжении 1 В течет ток 1 Ом=1 В/А.
Величина σ=1/ρ, обратная удельному сопротивлению, называется удельной электрической проводимостью проводника.
Единица электрической проводимости – сименс (См).
Сименс – электрическая проводимость проводника сопротивлением 1 Ом, т.е. 1 См=1 Ом־¹.Из формулы (1.1) следует, что единицей удельного сопротивления является Ом-метр (Ом ٠м).
Таблица 1.1 Удельное сопротивление наиболее распространенных проводников
Материал ρ, 10־ Ом∙м Характеристика материала |
Серебро 1,6 Наилучший проводникМедь 1,7 Применяется наиболее частоАлюминий 2,9 Применяется частоЖелезо 9,8 Применяется редко |
Удельное электрическое сопротивление проводника зависит не только от рода вещества, но и от его состояния. Зависимость удельного сопротивления ρ от температуры выражается формулой
ρ = ρ0 (1+ αt), (1.2)
где ρ0 – удельное сопротивление при 0°C; t – температура (по шкале Цельсия); α – температурный коэффициент сопротивления, характеризующий относительное изменение сопротивления проводника при нагревании его на 1°C или 1 K:
α = (ρ-ρ0)/ρ0t. (1.3)
Температурные коэффициенты сопротивления веществ различны при разных температурах. Однако для многих металлов изменение α с температурой не очень велико. Для всех чистых металлов α ≈ 1/273 K־¹ (или °C־¹).
Зависимость сопротивления металлов от температуры положена в основу устройства термометров сопротивления. Они используются как при очень высоких, так и при очень низких температурах, когда применение жидкостных термометров невозможно.
Из понятия о проводимости проводника следует, что чем меньше сопротивление проводника, тем больше его проводимость. При нагревании чистых металлов их сопротивление увеличивается, а при охлаждении – уменьшается.
В 1911 г. Голландский физик Камерлинг-Оннес провел опыты с ртутью, которую можно получить в чистом виде. Он столкнулся с новым, совершенно неожиданным явлением. Удельное сопротивление ртути при температуре 4,2 K (около -269°C) резко упало до такой малой величины, что его практически стало невозможно измерить. Это явление обращения электрического сопротивления в нуль Камерлинг-Оннес назвал сверхпроводимостью.
В настоящее время сверхпроводимость обнаружена у более чем 25 металлических элементов, большого числа сплавов, некоторых полупроводников и полимеров. Температура Tкр перехода проводника в сверхпроводящее состояние для чистых металлов лежит в пределах от 0,14 K для иридия до 9,22 K для ниобия.
Движение электронов в металле, находящемся в состоянии сверхпроводимости, является до такой степени упорядоченным, что электроны, перемещаясь по проводнику, почти не испытывают соударений с атомами и ионами решетки. Полное объяснение явления сверхпроводимости можно дать с позиций квантовой механики.
Кроме чисто электротехнических свойств, для проведения необходимой технологической обработки и обеспечения заданных сроков службы в эксплуатации, проводниковые материалы должны обладать достаточной нагревостойкостью, механической прочностью пластичностью.
1.2. Медь
Чистая медь по электрической проводимости занимает следующее место после серебра, обладающего из всех известных проводников наивысшей проводимостью. Высокая проводимость и стойкость к атмосферной коррозии в сочетании с высокой пластичностью делают медь основным материалом для проводов.
На воздухе медные провода окисляются медленно, покрываясь тонким слоем окиси CuO, препятствующим дальнейшему окислению меди. Коррозию меди вызывают сернистый газ SO2, сероводород H2S, аммиак NH3, окись азота NO, пары азотной кислоты и некоторые другие реактивы.
Проводниковую медь получают из слитков путем гальванической очистки ее в электролитических ваннах. Примеси даже в ничтожных количествах, резко снижают электропроводность меди, делая ее малопригодной для проводников тока, поэтому в качестве электротехнической меди применяют лишь две ее марки МО и М1.
Почти все изделия из проводниковой меди изготавливаются путем проката, прессования и волочения. Так, волочением могут быть изготовлены провода диаметром до 0,005 мм, ленты толщиной до 0,1 мм и медная фольга толщиной до 0,008 мм.
Проводниковая медь применяется как в отожженном после холодной обработки виде (мягкая медь марки ММ), так и без отжига (твердая медь марки МТ).
При температурах термообработки выше 900°C вследствие интенсивного роста зерна механические свойства мели резко ухудшаются.
В целях повышения предела ползучести и термической устойчивости медь легируют серебром в пределах 0,07 – 0,15%, а также магнием, кадмием, цирконием и другими элементами.