Смекни!
smekni.com

Проект электрокотельной ИГТУ (стр. 13 из 28)

Таблица 3.25. Расчет нагрузки трансформаторов напряжения.

Прибор Тип SKAT,BA число кат. cos  sin  число приб. РОБЩ., Вт QОБЩ., Вар
вольтметр Э-335 2 1 1 0 2 4 0
ваттметр Д-335 1,5 2 1 0 1 3 0
варметр Д-335 1,5 2 1 0 1 3 0
счетчик акт. энергии И-680 2 Вт 2 0,38 0,925 1 0,76 1,85
счетчик реакт. энергии И-680 2 Вт 2 0,38 0,925 1 0,76 1,85
частотометр Э-371 3 1 1 0 1 3 0
ИТОГО: 14,52 3,7

Полная вторичная нагрузка ТН:

Sр=

SНОМ2 > Sр 120 ВА > 14,98 ВА

Проверка других трансформаторов напряжения по вторичной нагрузке аналогична.

На термическую и динамическую стойкость трансформаторы напряжения не проверяются, так как защищены предохранителем.

2. РУ-220 кВ.

Трансформатор напряжения НКФ –220-58У1 [13].

UНОМ = 220 кВ;SНОМ2 = 400 ВА.

5. Выбор ограничителей перенапряжения.

Выбор ограничителей перенапряжения производится по номинальному напряжению установки.

1. ОРУ-220 кВ.

Выбираем ОПН –220.У1 [13]

2. РУ-6 кВ.

Выбираем ОПН –6.У1 [13]

3.10 Выбор и проверка шин на термическую и электродинамическую стойкости

1. Произведем выбор шин РУ-6 кВ электрокотельной.

Исходные данные:

IРАС =

= 4967,9 А.

IП.О. = 13,85 кА;

i У = 34,89 кА;

BK = IП.О.2 ∙ (tЗ + tОТК) = 13,85 2 ∙ (0,1 + 0,095) = 37,4 кА2 ∙ с.

Выбираем шины по условию нагрева. К величине рабочего тока близки алюминиевые четырёхполосные шины, сечением 4(120х10) мм2 с допустимым током IДОП = 5200 А [1].

Проверяем шины на термическую стойкость.

Определяем минимальное допустимое сечение шин:


где ВК –тепловой импульс от тока короткого замыкания, А2 ∙ с;

С = 91 – тепловой коэффициент для шин из алюминия [7].

Сечение шины S = 480 ∙ 10 = 4800 мм2

S ≥ SMIN

4800мм2 > 67,2 мм2

Шины термически устойчивы.

Проверяем шины на электродинамическую стойкость.

Сечение шины: h x b = 480 х10 мм2;

h = 0,48 м; b = 0,04 м.

Шины расположены на ребро.

Проверка производится по условию:

dРАСЧ £dДОП

где dРАСЧ – максимальное механическое напряжение в материале шин в точке взаимодействия изгибающего момента;

dДОП =82,3 Мпа –допустимое максимальное напряжение [7].

Наибольшее усилие, действующее на среднюю фазу:


F = 1,76×iУД2×

×10-7,

где l=750 мм- расстояние между изоляторами одной фазы.

а=250 мм- расстояние между соседними фазами.

iУД-ударный ток в точке К-2

F =1,76×348902×

×10-7=642,74 Н

Определяем момент сопротивления динамическому воздействию:

W =

Определяем максимальное механическое напряжение в материале шин в точке взаимодействия изгибающего момента:

dМ =

МПа

dДОП ≥ dМ

82,3 МПа > 28,8 МПа

Шины динамическое воздействие выдержат.

3.10.1 ПРОВЕРКА ВЫСОКОВОЛЬТНЫХ КАБЕЛЕЙ НА УСТОЙЧИВОСТЬ К ТОКАМ КОРОТКОГО ЗАМЫКАНИЯ

1.Кабель от РУ-6 кВ к асинхронным двигателям.

Кабель ААГУ-6 кВ (3х95)

Определяем минимальное допустимое сечение жилы кабеля по условиям термической стойкости:



С = 95 – коэффициент для кабеля с алюминиевыми жилами [7].

S ≥ SMIN

95 мм2 > 71,1 мм2

Кабель термическое действие тока выдержит.

2.Кабель от РУ-6 кВ к КТП.

Кабель ААГУ -6 кВ (3х10)

Минимальное допустимое сечение жилы кабеля по условиям термической стойкости:


S ≥ SMIN

10 мм2 < 71,1 мм2

Кабель термическое действие тока не выдерживает, поэтому выбираем кабель большего сечения.

Кабель ААГУ-6 кВ (3 х 95). IДОП = 215 А.

95 мм2 > 71,1 мм2

Кабель термическое действие тока выдержит.

3.Кабель от РУ-6 кВ до электрокотельной.

Кабель ААГУ -6 кВ 3(3х150)

Минимальное допустимое сечение жилы кабеля по условиям термической стойкости:



S ≥ SMIN

3х150 мм2 < 71,1 мм2

Кабель термическое действие тока выдержит.


3.11 РАСЧЕТ ТОКА ТРЕХФАЗНОГО КОРОТКОГО ЗАМЫКАНИЯ В СЕТЯХ НАПРЯЖЕНИЕМ ДО 1000 В.

Рис. 2.3

Приводим сопротивления системы электроснабжения высшего напряжения к напряжению 0,4 кВ:


R6/0,4 = R6 ∙

∙ КТ2 =
= 0,0002 мОм

X6/0,4 = X6 ∙

∙ КТ2 =
= 0,003 мОм

Сопротивление цехового трансформатора:

RТ =

∙106 = 31,5 мОм

XТ =

∙106 = 20,8 мОм

Удельные сопротивления жилы кабеля АВВГ-1 кВ (3х150 + 1х50):

R0Ф= 0,22 Ом/км;Х0Ф=0,06 Ом/км.[6]

Сопротивление жилы кабеля длиной L1 =0,058 км:

R1Ф = R0Ф ∙ L1=0,22 ∙ 0,058 = 0,012 Ом;

Х1Ф = Х0Ф ∙ L1=0,06 ∙ 0,058 = 0,0034 Ом.

Удельные сопротивления жилы кабеля АВВГ-1 кВ (3х6 + 1х4):

R0Ф= 5,55 Ом/км;Х0Ф=0,09 Ом/км.[9]

Сопротивление жилы кабеля длиной L2 =0,0458 км:

R2Ф = R0Ф ∙ L2=5,55 ∙ 0,0458 = 0,254 Ом.

Х2Ф = Х0Ф ∙ L2=0,09 ∙ 0,0458 = 0,0041 Ом;


Короткое замыкание в точке К-1:

Результирующее сопротивление:

Индуктивное сопротивление:

Х РЕЗ = Х 6/0,4 + Х Т = 0,003 + 20,8 = 20,803 мОм

Активное сопротивление:

R РЕЗ = R 6/0.4 +RТ +RДОБ = 0,0002 +31,5 +15 =46,5002 мОм

где RДОБ = 15 мОм –переходное сопротивление контактов [24]

Результирующее полное сопротивление:

Z РЕЗ =

= 50,9 мОм

Значение тока короткого замыкания в точке К-1:


Ударный ток короткого замыкания:

iУ К-1 =

∙ КУ ∙ I К-1 =
∙ 1,05 ∙ 4,5 = 6,68 кА

где КУ =1,05 –ударный коэффициент [24].

Короткое замыкание в точке К-2:

1. Результирующее сопротивление:

Индуктивное сопротивление:


Х РЕЗ = Х 6/0,4 + Х Т + X1Ф =0,003 + 20,8 + 3,4 =24,2 мОм

Активное сопротивление:

R РЕЗ = R 6/0.4 +RТ + R1Ф + RДОБ = 0,0002 + 31,5 + 12 + 15 + 20 =

= 78,5 мОм

где RДОБ = 20 мОм –переходное сопротивление контактов [24]

Результирующее полное сопротивление:

Z РЕЗ =

= 82,2 мОм

Значение тока короткого замыкания в точке К-2:


Ударный ток короткого замыкания:

iУ К-2 =

∙ КУ ∙ I К-2 =
∙ 1,03 ∙ 2,8 = 4,1 кА

где КУ =1,03 –ударный коэффициент [24].

Короткое замыкание в точке К-3:

1. Результирующее сопротивление:

Индуктивное сопротивление:

Х РЕЗ = Х 6/0,4 + Х Т + X1Ф + X2Ф = 0,003 + 20,8 + 3,4 + 4,1 =28,3 мОм

Активное сопротивление:


R РЕЗ = R 6/0.4 +RТ + R1Ф + R2Ф + RДОБ = 0,0002 + 31,5 +12 + 254 + 15 + 20 + 25 + 30 =387,5 мОм

где RДОБ = 25 мОм и 30 мОм –переходное сопротивление контактов [24]

Результирующее полное сопротивление:

Z РЕЗ =

= 388,5 мОм

5.Значение тока короткого замыкания в точке К-3:


6.Ударный ток короткого замыкания:

iУ К-3 =

∙ КУ ∙ I К-3 =
∙ 1 ∙0,59 = 0,83 кА

где КУ =1 –ударный коэффициент [24].

Результаты расчетов токов трехфазного короткого замыкания заносим в сводную таблицу 3.26. .

Таблица 3.26. Сводная таблица расчета токов короткого замыкания
Точка К.З. I К (3) , кА i У , кА
К-1 4,5 6,68
К-2 2,8 4,1
К-3 0,59 0,83

3.12 ВЫБОР ЭЛЕКТРИЧЕСКИХ АППАРАТОВ НАПРЯЖЕНИЕМ ДО 1000 В.ВЫБОР АВТОМАТИЧЕСКИХ ВЫКЛЮЧАТЕЛЕЙ

Автоматические выключатели предназначены для автоматического размыкания электрических цепей при ненормальных режимах работы, для редких оперативных переключений при нормальных режимах, а также для защиты электрических цепей при недопустимых снижениях напряжения. Наименьший ток, вызывающий отключение автоматического выключателя, называют током срабатывания, а настройку расцепителя автоматического выключателя на заданный ток срабатывания – уставкой тока срабатывания.