Смекни!
smekni.com

Проект электрокотельной ИГТУ (стр. 27 из 28)

мощности, что отключение одного из них не приводит к недопустимым перегрузкам оставшихся в работе;

2) источники не работают параллельно, но имеют между собой резервные связи и запас мощности; при отключении одного из источников его нагрузка переключается по этим связям на другие;

3) один или несколько источников находятся в резерве и включаются при отключении основного источника.

Переключения, предпринимаемые в двух последних случаях, могут быть автоматическими и называются тогда автоматическим включением резерва (АВР).

Если предприятие питается от энергосистемы двумя независимыми линиями, то на всех ступенях системы электроснабжения предприятия (на ГПП, в распределительной сети ВН, на цеховых подстанциях, в цеховых сетях) при отключении основного питания, может быть предусмотрено автоматическое переключение на соседние работающие независимые источники (на другой трансформатор двухтрансформаторной подстанции, на соседние подстанции и т. п.). То же самое относится к случаю, когда предприятие питается одновременно от энергосистемы и собственной электростанции или только от собственной многоагрегатной электростанции. Необходимый для такого переключения запас мощности или пропускной способности отдельных элементов системы электроснабжения называется иногда неявным или скрытым резервом.

Стоимость неявного резерва, как правило, ниже, чем стоимость явного резерва (специальных резервных трансформаторов, генераторных или аккумуляторных установок и т. п.), и поэтому при АВР имеется в виду применение, как правило, неявного резерва.

На рис.18 показан принцип применения устройств АВР, действующих на секционные выключатели двухтрансформаторных подстанций. Принцип может быть распространен также на независимые однотрансформаторные подстанции, связанные между собой резервной линией. Автоматическое включение резерва происходит после срабатывания защиты минимального напряжения и отключения этой защитой основного питания. Во избежание одновременного срабатывания устройств АВР различных ступеней системы электроснабжения выдержка времени защиты минимального напряжения низших ступеней отстраивается от времени срабатывания аналогичной защиты высших ступеней, т. е.

,

где tC,i время срабатывания защиты минимального напряжения, используемой в качестве пускового органа АВР на i-й ступени системы электроснабжения; tC(i+1) - время срабатывания аналогичной защиты на следующей (по удалению от источника питания) ступени системы электроснабжения;

t0 - время отстройки, принимаемое в пределах 0,5—0,7 с.

Во избежание лишних переключений, как правило, требуют, чтобы АВР происходило только в тех случаях, когда первый цикл применяемого в питающей сети АПВ оказался неуспешным.

Кроме неявного резерва, в системах электроснабжения могут предусматриваться специальные (явные) резервные источники. Необходимость в таких источниках возникает в основном в трех случаях:

1) при отсутствии двух постоянно работающих независимых источников питания, требуемых для приемников 1-й и 2-й категорий (например, при нецелесообразности двух вводов от энергосистемы из-за малой доли ответственных приемников в общей мощности предприятия);

2) при наличии приемников, относящихся к особой группе 1-й категории и требующих наличия трех независимых источников питания;

3) при жестких требованиях к максимально допускаемой длительности перерыва в питании, которые могут быть удовлетворены только путем применения быстроподключаемых резервных источников.

Основным требованием, предъявляемым к устройствам АВР, является однократность действия, т.е. исключение повторного срабатывания при неуспешном АВР. Выполнение этого требования может обеспечиваться теми же средствами, какие применяются в устройствах АПВ.

АВР применяется только в тех случаях, когда параллельная работа независимых источников питания невозможна или экономически нецелесообразна. При возможности параллельной работы и использования замкнутых сетей надёжность электроснабжения может обеспечиваться и без применения АВР.

8.6.5 РЕГУЛИРОВАНИЕ НАПРЯЖЕНИЯ

Регулирование напряжения – это процесс изменения уровня напряжения в характерной точке сети при помощи технических средств. Контроль за уровнем отклонения напряжения U – производится тремя способами:

1. По уровню (сравнение реальных значений отклонения напряжения с нормированным).

2. По электрической системе, то есть в определенных точках системы.

3. По длительности существования отклонения (по времени).

Регулирование напряжения осуществляется с помощью АСДУ (автоматической системы диспетчерского управления). Локальное регулирование напряжения может быть централизованным и местным.

Местные в свою очередь делятся на:

1) групповое регулирование напряжения – для нескольких электроприемников;

2) индивидуальное регулирование – специальное регулирование.

В централизованном регулировании напряжения можно выделить три подтипа в зависимости от характера изменения нагрузки:

стабилизация – применяется для потребителей с почти неизменной нагрузкой; двухступенчатое – для предприятий с односменным графиком; встречно-регулируемое – при переменном графике нагрузок.

Учитывая требования по напряжению удаленных и близлежащих потребителей, основным средством регулирования напряжения выбраны трансформаторы и автотрансформаторы районных подстанций.

Различают два типа трансформаторов на подстанциях:

1. Трансформаторы с ПБВ – трансформаторы с переключением без возбуждения.

2. Трансформаторы с РПН – трансформаторы с регулировкой под нагрузкой.

Регулировочное ответвление трансформатора выполняется на стороне высокого напряжения.


Трансформаторы с ПБВ

Выполняют с основным и четырьмя дополнительными ответвлениями. Основное ответвление имеет напряжение

при этом коэффициент трансформации номинален. При использовании четырёх дополнительных ответвлений коэффициент трансформации отличается от номинального на
. Вторичная обмотка является центром питания сети и её напряжения на 5% больше номинального в трансформаторах малой мощности и на 10% больше номинального в трансформаторах большой мощности.

Предположим что к W1 подведено номинальное напряжение и при холостом ходе в обмотке низкого напряжения W2 у нас

., изменяя коэффициент трансформации можно изменить напряжение на низкой стороне.

Трансформаторы с РПН.

Отличаются от трансформаторов с ПБВ наличием отключающего устройства, большим числом ступеней трансформации, а, следовательно, большим диапазоном регулирования. Обмотка высокого напряжения состоит из двух частей: регулируемая и нерегулируемая.

а – не регулируемая; б – регулируемая; в, г – подвижные контакты. На регулируемой обмотке б имеется ряд регулировочных ответвлений. Ответвление 1, 2 соответствует части обмотки, включенной согласно с основной, ответвления 3, 4 включены встречно. При включении 1, 2 коэффициент трансформации повышается, 3, 4 – уменьшается. Основной вывод обмотки точка 0. На регулируемой части обмотки включено переключающее устройство, которое состоит из в, г – подвижные контакты, К1, К2 – контакторы и Р – регулировочный токоограничивающий реактор Допустим, требуется переключить со второго на первое ответвление. Отключаем контактор К 1 переводим подвижный контакт в на регулировочное ответвление 1, включаем контактор К1. С помощью трансформатора с РПН переключая регулировочные обмотки, выполняем требование встречного регулирования.

8.7 ИЗМЕРИТЕЛЬНЫЕ ТРАНСФОРМАТОРЫ

Измерительные трансформаторы тока и напряжения служат для уменьшения соответственно тока и напряжения до значений, на которые рассчитаны вторичные реле и измерительные приборы, а также отделения вторичных цепей от первичных (силовых) для обеспечения безопасности обслуживающего персонала. К вторичным обмоткам трансформаторов тока подключают амперметры, реле тока, а также токовые обмотки других приборов и аппаратов (ваттметров, электрических счетчиков, реле мощности).К вторичным обмоткам трансформаторов напряжения подключают вольтметры, реле напряжения, а также обмотки напряжения других приборов и аппаратов. Трансформаторы тока имеют замкнутый магнитопровод ,первичную и вторичную обмотки. Первичная обмотка включается в первичную цепь с первичным током. Важной характеристикой трансформатора тока является коэффициент трансформации К, равный отношению первичного тока I1 к вторичному I2 . Основные параметры трансформаторов тока – номинальные первичный и вторичный токи, класс точности, нагрузка вторичной цепи, определяемая мощностью в вольтамперах или сопротивлением в Омах, и предельная кратность тока. Трансформаторы тока обычно имеют первичные обмотки на токи от 5 до 15000 А и вторичные - на 5 А. Класс точности – обобщенная характеристика трансформатора тока, определяемая установленными пределами допустимых погрешностей при заданных условиях работы, - обозначается числом, показывающим допустимую токовую погрешность в процентах при номинальном первичном токе. Выпускаются трансформаторы тока 0,5; 1 и 3 классов точности. Номинальной мощностью трансформатора называют такую нагрузку, при которой погрешность не превышает предельно допустимого значения. Промышленностью выпускается трансформаторы тока напряжением до 750 кВ внутренней и наружной установки различного конструктивного исполнения: