r*т=DРк.з./Sном=3,1/160=0,0194,
где DРк.з.=3,1 кВт – номинальные потери трансформатора при коротком замыкании по паспорту;
Sном=160 кВА – номинальная мощность трансформатора.
4.5.15.2 Реактивное сопротивление трансформатора в относительных единицах х*т
где uк=6,5% - характеристика трансформатора.
4.5.15.3 Активное сопротивление трансформатора, приведенное к напряжению 0,4 кВ rт
4.5.15.4 Реактивное сопротивление трансформатора, приведённое к напряжению 0,4 кВ хт
4.5.16 Приведём активное сопротивление линии 6 кВ к напряжению 0,4 кВ
4.5.16.1 Коэффициент трансформации трансформатора n
n=UВН/UНН=6000/400=15.
4.5.16.2 Активное приведённое сопротивлении линии rS2*
rS2*=rS2/n2=0,1021/152=0,00045 Ом.
4.5.17 Приведённое реактивное сопротивление составляет хS2*
хS2*=хS2/n2=0,1794/152=0,0008 Ом.
4.5.18 Найдём сопротивление проводов, соединяющих трансформатор и РШ 0,4, принимая длину проводов l3=20 м
4.5.18.1 Активное сопротивление проводов составляет r3
r3=ro´l3=0,261´0,02=0,00522 Ом,
где rо=0,261 Ом/км – удельное активное сопротивление кабеля сечением жилы 120 мм2 по таблице 2-65 [26].
4.5.18.2 Реактивное сопротивление линии х3
х3=хо´l3=0,08´0,02=0,0016 Ом,
где хо=0,08 Ом/км – удельное реактивное сопротивление кабеля с алюминиевыми жилами согласно [10] на стр. 70.
4.5.19 Суммарное активное сопротивление с учетом сопротивления трансформатора rS3
rS3=rS2*+rт+r3=0,00045+0,0194+0,00522=0,02507 Ом.
4.5.20 Суммарное реактивное сопротивление в конце линии хS3
хS3=хS2*+хт+х3 =0,0008+0,062+0,0016=0,0644 Ом.
4.5.21 Результирующее сопротивление в конце линии z3
4.5.22 Ток короткого замыкания в конце участка составляет Iк.з.3
4.5.23 По отношению хS3/rS3 =0,0644/0,2507=2,6 находим по номограмме на рис. 3.2 [10] ударный коэффициент kу=1,3.
4.5.24 Ударный ток в конце линии составляет Iуд.3 по формуле (3.8) [10]
Iуд.3=Ö2´kу´Iк.з.3=Ö2´1,3´3342=6144 А.
4.5.25 Найдём сопротивление линии электродвигателя Рном=45 кВт, принимая длину проводов l4=15 м
4.5.25.1 Активное сопротивление проводов составляет r4
r4=ro´l4=0,447´0,015=0,0067 Ом,
где rо=0,447 Ом/км – удельное активное сопротивление кабеля сечением жилы 70 мм2 по таблице 2-65 [26].
4.5.25.2 Реактивное сопротивление линии х4
х4=хо´l4=0,08´0,015=0,0012 Ом,
где хо=0,08 Ом/км – удельное реактивное сопротивление кабеля с алюминиевыми жилами согласно [10] на стр. 70.
4.5.26 Суммарное активное сопротивление на конце линии у двигателя rS4
rS4=rS3+r4=0,02507+0,0067=0,03177 Ом.
4.5.27 Суммарное реактивное сопротивление в конце линии хS4
хS4=хS3+х4 =0,0644+0,0012=0,0656 Ом.
4.5.28 Результирующее сопротивление в конце линии z4
4.5.29 Ток короткого замыкания в конце участка перед двигателем составляет Iк.з.4
4.5.30 По отношению хS4/rS4 =0,0656/0,03177=2,06 находим по номограмме на рис. 3.2 [10] ударный коэффициент kу=1,25.
4.5.31 Ударный ток в конце линии составляет Iуд.4 по формуле (3.8) [10]
Iуд.4=Ö2´kу´Iк.з.4=Ö2´1,25´3168=5600 А.
4.6 Проверка выбранного оборудования на действие токов короткого замыкания
4.6.1 Сечения кабелей и проводов проверяются на термическую устойчивость к токам короткого замыкания по формуле (3.83) [10]
4.6.1.1 Минимальное сечение жилы кабеля, соединяющего проектируемую установку с РШ 6 кВ согласно (3.83)
sмин=Iк.з.1´Ötпр/с=19550´Ö0,7/85=192,4 мм2,
где tпр=0,7 с – время действия защиты на рассматриваемом участке;
с=85 – коэффициент для кабелей с алюминиевыми жилами согласно стр. 87 [10];
отсюда видно, что выбранное сечение кабеля s=185 мм2 не удовлетворяет условиям термической устойчивости, поэтому принимаем кабель с сечением жилы s=240 мм2.
4.6.1.2 Проверка на термическую устойчивость сечения жилы кабеля, соединяющего РШ 6 кВ с силовым трансформатором, не производится, так как установленный на стороне высшего напряжения предохранитель предполагает мгновенное отключение в случае короткого замыкания.
4.6.1.3 Минимальное сечение жилы провода подключения трансформатора к РШ 0,4 кВ согласно (3.83)
sмин=Iк.з.3´Ötпр/с=3342´Ö0,4/85=25 мм2,
где tпр=0,4 с – время действия защиты на рассматриваемом участке с учетом ступени селективности;
с=85 – коэффициент для кабелей с алюминиевыми жилами согласно стр. 87 [10];
отсюда следует, что выбранные провода сечением s=120 мм2 являются термически стойкими.
4.6.1.4 Минимальное сечение жилы провода подключения электродвигателя согласно (3.83)
sмин=Iк.з.4´Ötпр/с=3168´Ö0,1/85=12 мм2,
где tпр=0,1 с – собственное время действия выключателя;
с=85 – коэффициент для кабелей с алюминиевыми жилами согласно стр. 87 [10];
отсюда следует, что выбранные провода сечением s=70 мм2 являются термически стойкими.
4.6.2 Высоковольтный выключатель ВМП10 проверяется на термическую устойчивость и динамическую стойкость
4.6.2.1 Проверка на динамическую устойчивость
Iуд.н.=64 кА > Iу1=52,53 А,
где Iуд.н.=64 кА – номинальный ударный ток выключателя.
4.6.2.2 Проверка на термическую устойчивость
I102´t10=202´10=4000 кА > Iк.з.2´tпр=19,550´0,7=13,7 кА,
где I10=20 кА – ток термической устойчивости в течение 10 секунд.
4.6.2.3 Таким образом, выбранный выключатель удовлетворяет условиям динамической устойчивости и является термически стойким.
4.6.3 Выключатель напряжения проверяем по номинальному току отключения Iн=400 А > Iр2=11 А.
4.6.4 Предохранители выключателя напряжения проверяем по наибольшему току, отключаемому предохранителем ПК-6 Iпред.=30 кА > Iу=27,530 А.
4.6.5 Автоматический выключатель АВМ-4С проверяем по току короткого замыкания таким образом, чтобы обеспечить отключение автомата в случае действия токов короткого замыкания
Iном.р.´1,4=400´1,4=560 А < Iк.з.3=3342 А,
где Iном.р.=400 А – каталожный ток расцепителя автомата;
таким образом, в случае короткого замыкания автомат сработает.
4.6.6 Аналогично проверяем автоматический выключатель А-3710Б с номинальным током расцепителя Iном.р=160 А
Iном.р.´1,4=160´1,4=224 А < Iк.з.=3170 А.
4.7 Окончательный выбор коммутирующей аппаратуры, кабелей и проводов
4.7.1 На кабельной линии, соединяющей проектируемую установку с шинами 6 кВ, устанавливается высоковольтный выключатель типа ВМП 10
4.7.2 Выключатель мощности ВНП-17 с предохранителями ПК-6 устанавливается на стороне высшего напряжения трансформатора.
4.7.3 Автоматический выключатель на стороне низшего напряжения трансформатора АВМ-4С.
4.7.4 Автоматический выключатель электродвигателя Р=45 кВт типа А-3710Б.
4.7.5 Окончательно принимаем, что проектируемая установка питается от шин 6 кВ силовым кабелем марки ААШВ-6 сечением жилы s=240 мм2 проложенным в земле. Кабельная линия трансформатора выполняется кабелем марки ААШВ-6 сечением жилы s=10 мм2. Со стороны низшего напряжения трансформатора РШ 0,4 кВ подсоединяется проводами марки АПР сечением жилы s=120 мм2, проложенными в трубе. Подсоединение двигателя осуществляется проводами марки АПР сечением жилы s=70 мм2, проложенными в одной трубе.
5 Экономическая часть
5.1 Адиабатная выпарная установка предназначена для получения деминерализованной воды с использованием в качестве греющего теплоносителя вторичных энергоресурсов производства “Аммиак-2”. Такой подход должен обеспечить снижение текущих расходов, и тем самым дать положительный экономический эффект.
Предполагается, что проектируемая установка включается в производственный цикл вместо существующего цеха ХВП, закрытие которого и должно обеспечить экономию денежных средств.
Чтобы определить срок окупаемости проекта необходимо установить стоимость всех затрат на сооружение установки, эксплуатационные расходы, которые будут иметь место, и найти экономию, которую обеспечит внедрение проекта.
5.2 Капитальные затраты на сооружение установки Скап складываются из стоимости материалов и оборудования и стоимости монтажных работ
5.2.1 Стоимость монтажа определяется по ценникам СНиП с учётом необходимых коэффициентов перевода в действительные цены:
1. Накладные – К1 =1,21;
2. Перевод в цены 1991 года – К2 =1,63;
3. Перевод в цены на май 2002 года – К3 =16,45;
4. Налог на добавленную стоимость – К4 =1,2.
5.2.2 Отсюда стоимость монтажа оборудования определяется как стоимость в ценах 1984 года умноженная на коэффициенты перевода