Многоступенчатая конструкция опреснительной установки мгновенного вскипания влияет на удельный расход теплоты. Согласно [20] с повышением числа ступеней значение удельного расхода теплоты уменьшается, чем и объясняется имеющаяся тенденция к увеличению числа ступеней установок большой производительности.
К числу основных параметров и характеристик дистилляционной опреснительной установки относят предельную температуру исходной воды в первой и последней ступенях и определяющие их значение давления и температуры греющей среды, температурный напор и подогрев воды по ступеням, производительность установки и число ступеней в ней, а также допустимая степень концентрирования исходной воды. Правильный выбор параметров установки позволит в значительной степени сократить стоимость её строительства.
Учитывая имеющиеся данные и рекомендации источников, выбираем для проектирования схему двухконтурной многоступенчатой адиабатной выпарной установки с регенерацией теплоты вторичного пара.
2. Расчёт адиабатной выпарной установки
2.1 Выбор эжектора
2.1.1 В качестве основного греющего пара в установке используем низкопотенциальный водяной пар, отработанный в турбинах привода основного оборудования производств аммиака, с параметрами на выходе Pвак=69,8 – 53,2 кПа и t=63 – 80 оC.
Для повышения потенциала греющего пара устанавливается пароструйный эжектор. Это позволит повысить температуру используемого пара с 70 оС до 100-101 оС. Тем самым удастся увеличить температурный перепад в ступенях установки адиабатного вскипания, что приведёт к снижению расхода воды, поступающей на испарение, охлаждающей воды и уменьшению капитальных затрат.
Принимаем в качестве рабочего пар 40 из общезаводской сети с параметрами P=4,0 МПа и t=375 оС. В месте с тем, рассмотрим возможность работы эжектора на паре других параметров, а именно: пар 10 (P=1 МПа и t=230 оС) и пар 27 (P=2,4 МПа и t=280 оС).
2.1.2 Найдём значения коэффициентов эжекции при использовании рабочего пара различных параметров
2.1.3 Исходные данные для расчёта
2.1.3.1 Температура рабочего пара tр=375оC (230 оС и 280 оС).
2.1.3.2 Давление рабочего пара Рр=4,0 МПа (0,98 МПа и 2,4 МПа).
2.1.3.3 Температура эжектируемого пара tн=70оС.
2.1.3.4 Давление эжектируемого пара Pн=3,1161´104 Па.
2.1.3.5 Температура смеси на выходе tс=101оС.
2.1.3.6 Давление смеси на выходе Рс=0,0981МПа=1ата.
2.1.4 Для заданных параметров сред найдём по таблицам 2-1 и 2-3 [18] значения энтальпий h
hр40= 3158,8 кДж/кг; hр27=2966,9 кДж/кг; hр10= 2897,9 кДж/кг;
hн=2626,8 кДж/кг;
hc=2680,7 кДж/кг.
2.1.5 По формуле (2-29) [23] определим величину коэффициента инжекции u для случая использования пара 40
принимаем коэффициент инжекции равный u=9.
2.1.6 Уточним значение энтальпии смеси на выходе из эжектора hсд по формуле (2-29) [23]
2.1.7 Аналогично находим значения коэффициентов эжекции для случаев применения в качестве рабочего пара 10 и пара 27 и при заданных параметрах эжектируемого пара и получаемой смеси. Полученные результаты представлены в таблице 3.
Таблица 3 - Коэффициент эжекции пароструйного эжектора при различных параметрах рабочего пара
Параметры Рабочего пара | Пар 10 Р=0,98 МПа, t=230оС | Пар 27 Р=2,4 МПа, t=280оС | Пар 40 Р=4,0 МПа, t=375оС |
Коэффициент эжекции | 4 | 5 | 9 |
2.2 Основные характеристики проектируемой адиабатной выпарной установки
2.2.1 Для улучшения характеристик установки принимаем температуру воды поступающей на испарение на выходе из головного подогревателя равной t1=100 оС. Согласно рекомендациям [20] на стр. 107 температуру рассола на выходе из последней ступени принимают равной 35 – 40 оС. Исходная вода на установку подается после предочистки из корпуса 174 с температурой tисх=30 оС.
Распределение располагаемого температурного напора по ступеням предполагаем равный, как технологически наиболее выгодный [27]. Кратность концентрирования в установке принимается равной 3 [20].
Общее количество ступеней установки делим на два контура [20]. Первый контур состоит из ступеней отвода теплоты, в которых теплота конденсации образующегося пара передаётся охлаждающей воде; второй представляет собой ряд ступеней регенерации, где теплота воспринимается нагреваемым рассолом. Согласно [20] число ступеней в первом контуре принимается равным трём, так как увеличение числа ступеней ведёт к потере теплоты со сбрасываемой водой. Оптимальное же число ступеней, входящих в регенеративный контур, чаще всего равно 5 – 6, что связано с расположением конденсаторов в корпусах. Основываясь на имеющихся данных число ступеней в установке принимается равным 9.
Для предотвращения накипеобразования на поверхностях теплообмена в циркулирующий рассол добавляется антинакипин в количестве до 10 мг/л в зависимости от типа.
Установка имеет горизонтальную компоновку и устанавливается в помещении. Это позволит защитить выпарные аппараты от воздействия внешней среды и обеспечить необходимый температурный режим.
2.3 Тепловой расчёт
2.3.1 Исходные данные теплового расчёта
2.3.1.1 Число ступеней испарения N=9 шт.;
2.3.1.2 Производительность по дистилляту Gд=750 т/час=208,3 кг/с;
2.3.1.3 Общее солесодержание исходной воды bисх=300 мг/кг;
2.3.1.4 Температура греющего пара tг.п.=101 оС;
2.3.1.5 Температура рассола, поступающего в первую ступень установки (после головного подогревателя) t1=100 оС;
2.3.1.6 Температура исходной осветлённой воды (летний режим) tисх.=30 оС;
2.3.1.7 Температура кипения раствора в последней ступени (принимается по технико-экономическим показателям) tк=40 оС;
2.3.1.8 Температура воды водооборотного цикла составляет: подающей tохл1=28 оС и обратной tохл2=35 оС.
2.3.1.9 Нагрузка 1 м2 поверхности камеры испарения sS=0,85 кг/м2.
2.3.2 Определим расход рассола, поступающего в первую камеру испарения G
где rср= 2331,85 кДж/кг – средняя теплота парообразования в установке;
Сср=4,198 кДж/кг*К – средняя теплоёмкость воды, поступающей на испарение по таблице 2-8 [18];
Kот = 1% – коэффициент, учитывающий величину оттяжек парогазовой смеси из камер испарения по рекомендациям на стр. 184 [14].
2.3.2 Средний температурный напор между ступенями Dt
где С1=4,205 кДж/кг*К – изобарная теплоёмкость воды при температуре кипения в первой ступени по таблице 2-4 [18];
r1=2274,7 кДж/кг – удельная теплота парообразования при температуре в первой камере испарения по таблице 2-1 [18].
2.3.4.2 Во второй ступени G2
2.3.4.3 В третьей ступени G3
2.3.4.4 В четвёртой ступени G4
(2.17) |
2.3.4.5 В пятой ступени G5