Смекни!
smekni.com

Проектирование ГРЭС (стр. 7 из 19)

Перед последней ступенью поток пара делится на два равных полупотока, которые затем поступают в ступени с одинаковой высотой лопаток. Одна ступень выполнена с длиной лопаток l=1200 мм при среднем диаметре

, другая – с длиной лопаток l=1200 мм при среднем диаметре
. Лопатки изготовлены из титанового сплава ТС-5. Давление пара перед обеими ступенями одинаковое.

Сокращение числа цилиндров низкого давления позволяет заметно снизить стоимость таких турбин.

2.14.2 Двухпоточная радиально-осевая ступень

Схема двухпоточного ЦНД с радиально – осевой ступенью имеет ряд преимуществ перед традиционными ЦНД с чисто осевыми ступенями. Двухпоточная радиально-осевая ступень позволяет сработать в два раза больший теплоперепад чем одна осевая ступень, тем самым заменяя четыре осевые ступени в двухпоточном ЦНД. Эффективность радиально-осевой центростремительной ступени в общем случае выше, чем осевой, поскольку в центростремительной ступени значительная доля работы совершается за счет кориолисовых сил без потерь энергии

. Уменьшаются концевые потери в направляющем аппарате вследствие течения двойного расхода пара через направляющий аппарат. Меньше потери энергии, связанные с углом поворота, вследствие меньшего угла поворота вектора относительной скорости, меньшего числа Маха и большего числа Рейнольдса. Радиально-осевая ступень отличается незначительной, по сравнению с осевой, чувствительностью к протечкам через осевые зазоры и отклонениям в геометрии проточной части.

Применение ДРОС также позволяет сократить осевые размеры ротора и всего цилиндра, снизить при этом металлоемкость и улучшить прочностные характеристики конструкции, либо использовать освобожденное место для модернизации осевой части ЦНД например:

· уменьшить угол раскрытия проточной части;

· раздвинуть осевые ступени, увеличив этим КПД и уменьшив влияние нестационарности потока, что безусловно, положительно отразится на прочности и долговечности высоконапряженного лопаточного аппарата.

2.14.2.1 Подводящее устройство

Подводящее устройство должно обеспечивать необходимую, по возможности, наиболее однородную структуру потока рабочего тела при входе в направляющий аппарат. Поток желательно иметь равномерный, осесимметричный и с устойчивым на большинстве режимов углом натекания на лопатки направляющего аппарата.

Подводящее устройство выполнено в виде двухзаходной улитки с двухпоточным подводом пара. Пар из общего трубопровода подводится двумя трубопроводами, расположенными горизонтально, что позволяет уменьшить вертикальные габариты машины, а также отсепарировать наиболее крупные механические частицы.

Для сепарации мелких механических примесей можно применять в подводящих паропроводах известные сепарационные устройства в виде свободновращающихся сепараторов, которые надежно, без потерь энергии позволяют удалить наряду с механическими примесями и часть крупнодисперсной влаги.

Применение двухзаходной улитки позволит осуществить подвод пара к сопловому аппарату более равномерно, что улучшает аэродинамику проточной части ЦНД.

Закон изменения площади улитки должен быть выбран таким образом, чтобы обеспечить требуемый наперед заданный угол входа потока в направляющий аппарат и равномерный подвод пара по всем лопаткам направляющего аппарата.

Выбор рационального способа профилирования позволит применить направляющий аппарат, обладающий низким уровнем потерь.

2.14.2.2 Конструкция рабочего колеса радиально-осевой ступени

В дипломном проекте выбрано двухпоточное рабочее колесо с шахматным расположением четного числа межлопаточных каналов меандрообразного типа. Данная конструкция рабочего колеса наиболее выгодна и отличается более плавными меридиональными обводами межлопаточных каналов, низкими потерями на трение, отсутствием диффузорных участков, более высокими прочностными характеристиками элементов колеса и высокой технологичностью.

Лопатка состоит из центральной части и концевых, левых и правых лопаток. Центральная часть представляет собой лопатки, у которых перо – это прямая пластина, которая для большей прочности снабжена ребрами жесткости.

Промежуточное тело центральной лопатки имеет сложную конфигурацию с тремя сквозными отверстиями неправильной формы. Это обеспечивает плавность изменения закона площадей поперечных сечений лопатки по её высоте, а, следовательно, позволяет избежать резких изменений растягивающих напряжений в пере лопатки, что повышает её прочность. Хвостовик центральной лопатки елочного типа. С помощью этого лопатки крепятся в теле диска ротора.

Рабочее колесо радиально-осевой ступени выполнено закрытого типа с учетом того, что осевой зазор между рабочим колесом и стенками корпуса не менее осевого смещения ротора относительно статора, то есть 20 мм.

Работа открытого рабочего колеса в условиях осевых зазоров приведет:

· к значительным перетечкам рабочего тела со стороны высокого давления лопаток на сторону низкого давления;

· к большим утечкам рабочего тела в зазоре.

Вследствие этого произойдет снижение степени реактивности и КПД ступени.

Конструкция рабочего колеса закрытого типа обладает рядом преимуществ по сравнению с рабочим колесом открытого и полуоткрытого типов. КПД закрытого колеса выше, чем КПД других типов колес на 2 – 6%.

2.14.3 Конструкция ротора ЦНД

Ротор ЦНД выполнен сболченным, состоящим из двух частей, с одним болтовым соединением. Конструкция сболченного ротора обладает следующими преимуществами:

· появляется возможность проверки качества отдельных поковок до их сбалчивания;

· применение высокопрочной легированной стали с пределами текучести

и более повышает надежность турбины, особенно в аварийных ситуациях;

· в случае обнаружения дефектов или повреждений в одной из частей ротора может быть заменена только поврежденная часть а не весь ротор;

· снижается необходимая грузоподъемность кранового оборудования на участках механической обработки частей ротора.

Ротор выполнен с центральной расточкой по всей длине диаметром 500 мм, что снижает его вес.

Из вышеперечисленного следует, что сболченный ротор значительно дешевле цельнокованого.

Радиально – осевая ступень крепится к ротору при помощи болтового соединения, которое также является креплением двух частей ротора ЦНД. В дисках РОС предусмотрены пазы для крепления центральных лопаток при помощи ёлочных хвостов и Т-образные пазы для хвостов концевых лопаток.

Для крепления ротора ЦНД с ротором ЦСД предусматриваются фланцы с системой отверстий под скрепляющие болты.


2.15 Выбор оптимальных параметров радиально-осевой ступени

Параметры радиально-осевой ступени должны выбираться исходя из ряда требований:

· высокого КПД;

· требуемой прочности;

· технологичности;

· простоты конструкции.

Выбор оптимального режима работы в данном дипломном проекте определен расчетным путем, исходя из следующих соображений /9/:

· Угол входа потока в относительном движении

и угол выхода потока из ступени
должны быть равны
;

· Условие радиального входа потока в рабочем колесе связано с предельной прочностью лопаток, так как в изогнутых лопатках возникают дополнительные изгибающие напряжения от действия центробежных сил;

· Высота концевых лопаток радиально-осевой ступени должна быть порядка

, чтобы не нарушать плавность всей проточной части уже существующего ЦНД турбины К‑800–240, при минимальном угле выхода потока в относительном движении
;

· Предельная окружная скорость

на периферийном диаметре не должна превышать
.

Для выполнения этих условий было произведено варьирование углом

в пределах
. Минимальный угол
не должен быть меньше
.

По описанной ниже методике был произведен расчет в Ленинградском Политехническом Институте /9/, на основании которого можно сделать следующие выводы: при малых значениях

влияние его на КПД ослабевает, поэтому ограничение по длине лопатки
, дающее нам
не может существенно занизить КПД.