Анализ загрузки ВЛ приведен в приложении Ж.
Напряжение сети постоянно меняется вместе с изменением нагрузки, режима работы источника питания, сопротивлений цепи. Отклонения напряжения не всегда находятся в интервалах допустимых значений. Причинами этого являются:
потери напряжения, вызываемые токами нагрузки, протекающими по элементам сети;
неправильный выбор сечений токоведущих элементов и мощности силовых трансформаторов;
неправильно построенные схемы сетей.
Контроль за отклонениями напряжения проводиться тремя способами:
по уровню - ведется путем сравнения реальных отклонений напряжения с допустимыми значениями;
по месту в электрической сети - ведется в определенных точках сети, например в начале или конце линии, на районной подстанции;
по длительности существования отклонения напряжения.
Регулированием напряжения называют процесс изменения уровней напряжения в характерных точках электрической системы с помощью специальных технических средств. Исторически развитие методов и способов регулирования напряжения и реактивной мощности происходило от низших иерархических уровней управления энергосистемами к высшим. В частности, в начале использовалось регулирование напряжения в центрах питания распределительных сетей - на районных подстанциях, где изменением коэффициента трансформации поддерживалось напряжение у потребителей при изменении режима их работы. Регулирование напряжения вначале применялось также непосредственно у потребителей и на энергообъектах (электростанциях, подстанциях).
Эти способы регулирования напряжения сохранились и до настоящего времени и применяются на низших иерархических уровнях автоматизированной системы диспетчерского управления (АСДУ). С точки зрения высших уровней АСДУ это локальные способы регулирования.
Локальное регулирование напряжения может быть централизованным, то есть проводиться в центре питания (ЦП), и местным, т.е. проводиться непосредственно у потребителей.
Принципиально способы регулирования напряжения можно разделить на две основные группы:
изменение потерь напряжения в элементах сети;
регулирование напряжения на питающем и приемном конце сети - регулирование возбуждения генераторов и коэффициента трансформации трансформаторов с РПН.
Целесообразность применения того или иного способа регулирования напряжения определяется местными условиями в зависимости от протяженности сети и ее схемы, резерва реактивной мощности и т.п.
Потери напряжения в линиях и трансформаторах зависят от номинального напряжения, нагрузки элемента сети и ее электрического сопротивления. Номинальное напряжение сети выбирают на основании технико-экономических расчетов, поэтому применение повышенных номинальных напряжений только из соображений уменьшения потерь напряжения в сети обычно не оправдывается.
Таким образом, изменять значения потерь напряжения в сети практически возможно только путем изменения сопротивления сети или ее нагрузки.
Практически изменение сопротивления сети связывают с изменением режима напряжений только в двух случаях:
при выборе сечений проводов и жил кабелей по допустимой потере напряжения;
при изменений последовательного включения конденсаторов с воздушной линией.
Последовательно включенные конденсаторы компенсируют часть индуктивного сопротивления линии, тем самым уменьшается реактивная слагающая потерь напряжения в линии и создается как бы некоторая добавка напряжения в сети, зависимая от нагрузки.
Последовательное включение конденсаторов целесообразно лишь при значительной реактивной мощности нагрузки при коэффициенте реактивной мощности tgφ>0.75-1. Если коэффициент реактивной мощности близок к нулю, потери напряжения в линии определяются в основном активным сопротивлением и активной мощностью. В этих случаях компенсация индуктивного сопротивления нецелесообразна.
Последовательное включение конденсаторов очень эффективно при резких колебаниях нагрузки, так как регулирующий эффект конденсаторов - величина добавки напряжения - пропорционален току нагрузки и автоматически изменяется практически безынерционно. Поэтому последовательное включение конденсаторов следует применять в воздушных линиях напряжением 35 кВ и выше, питающих резкопеременные нагрузки с относительно низким коэффициентом мощности. Их используют также в промышленных сетях с резкопеременными нагрузками.
Изменение нагрузок сети. Нагрузка сети определяется мощностью, одновременно потребляемой присоединенными к ней потребителей и теряемой в элементах сети. Активная мощность вырабатывается генераторами электростанций, что является наиболее экономичным. В связи с этим оказывается невозможным изменять активную нагрузку сети только ради изменения потерь напряжения в ней.
В противоположность этому реактивная мощность может вырабатываться не только генераторами электростанций, но и специальными источниками реактивной мощности.
Удельная мощность поперечно включенных батарей конденсаторов, необходимая для повышения напряжения в конце линии на 1%, зависит от номинального напряжения и индуктивного сопротивления передачи.
Регулирование возбуждения генераторов электростанций позволяет изменять напряжение в сети в относительно небольших пределах. Генератор выдает номинальную мощность при отклонениях напряжения на его выводах не более ± 5% от номинального. При больших отклонениях мощность генератора должна быть снижена. Практически этот способ регулирования может обеспечить необходимый режим напряжения для близлежащих потребителей, питающихся от шин генераторного напряжения электростанции.
Изменение коэффициента трансформации трансформаторов, автотрансформаторов под нагрузкой при наличие встроенного устройства для регулирования напряжения. При этом коэффициент трансформации можно менять в широких пределах.
Различают централизованное (проводится в центре питания) и местное (проводится у потребителей) регулирование напряжения.
В курсовом проекте регулирование напряжения осуществлялось на понижающих подстанциях сети при помощи регулировочных ответвлений под нагрузкой (трансформаторы с РПН), установленных на двухобмоточных трансформаторах. Одна часть ответвлений витков в таких трансформаторах включена согласно с основной обмоткой, другая - встречно. При присоединении контактов к виткам ответвлений, включенным согласно, добиваются увеличения напряжения, к включенным встречно - понижения. Преимущество такого регулирования состоит в том, что трансформатор при этом не отключают от сети.
Также напряжение можно регулировать при помощи трансформаторов без регулирования под нагрузкой (ПБВ). Однако такой способ приводит к вынужденному отключению от сети, а значит и к перерыву в электроснабжении потребителей, что крайне нежелательно. В связи с этим изменение коэффициента трансформации производят крайне редко, например при сезонном изменении нагрузки. Для них очень важно правильно выбрать коэффициент трансформации таким образом, чтобы режим напряжений при изменениях нагрузок был по возможности наилучшим Поэтому способ регулирования напряжения при помощи ПБВ в данном курсовом проекте не рассматривался.
В отдельных линиях или группе линий для регулирования напряжения пользуются линейными регулировочными (ЛР) и последовательными регулировочными трансформаторами. Так, они применяются при реконструкции уже существующих сетей, в которых используются трансформаторы без регулировки под нагрузкой. В этом случае для регулирования напряжения на шинах подстанции ЛР включаются последовательно с нерегулируемым трансформатором. Для регулирования напряжения на отходящих линиях линейные регуляторы включаются непосредственно в линии.
При помощи трансформаторов с РПН достаточно просто и экономично осуществляется встречное регулирование напряжения на шинах подстанции.
Выбор коэффициентов трансформации двухобмоточных трансформаторов производится в соответствии с принципиальной схемой. Нагрузка трансформатора характеризуется полной мощностью S и коэффициентом мощности cosφ или активной и реактивной мощностью. Трансформатор характеризуется номинальной мощностью Sном. т, номинальными напряжениями регулировочных ответвлений первичной обмотки UномI, номинальным напряжением вторичной обмотки UномII и номинальным коэффициентом трансформации:
Напряжение на первичной стороне трансформатора U1, на вторичной U2.
Допустим, что из расчета или на основании измерений известно напряжение U1 на стороне первичного напряжения трансформатора. Известно также напряжение U2жел, которое желательно иметь на вторичной стороне трансформатора. Требуется выбрать коэффициент трансформации трансформатора или подобрать номинальное напряжение соответствующего регулировочного ответвления на первичной обмотке трансформатора при заданной его нагрузке.
Определяем потерю напряжения ΔUт в трансформаторе, например при приведении к стороне ВН трансформатора. Вычитая ΔUт из U1, получаем напряжение на вторичной стороне трансформатора, приведенное к первичной стороне и соответствующее режиму нагрузок:
Желаемое значение напряжения на вторичной стороне трансформатора