Смекни!
smekni.com

Проектирование тепловой электрической станции для обеспечения города с населением 190 тысяч жителей (стр. 9 из 18)

5.5 Выбор насосов рециркуляции

Производительность насосов рециркуляции:

Qрц=0,5×Q1=0,5×208=104 м3/ч.

Принимаем к установке 3 насоса типа 6НК–9Х1, один из которых резервный другой ремонтный.

5.6 Расчёт мазутопроводов

Каждый из 2 напорных мазутопроводов рассчитываем на пропуск 75% общего количества мазута, потребляемого к/а с учётом рециркуляции.

Расход по одному мазутопроводу:

Q=0,75×Q2=0.75×208=156м3

Скорость мазута в мазутопроводе при вязкости его 2–4°ВУ W=2м/с.

Диаметр напорных мазутопроводов от мазутной до котельной:


По ГОСТу принимаем трубопровод диаметром 245´8мм (ст.20). Определяем действительную скорость мазута в трубопроводе стандартного диаметра:

Трубопровод выбран верно т.к.W=1¸2м/с


6. Выбор и расчет системы технического водоснабжения

Тепловые электростанции потребляют значительное количество воды для конденсации пара в конденсаторах паровых турбин, обеспечиваемое техническим водоснабжением электростанции. Потребителями технической воды также являются маслоохладители главных турбин и вспомогательного оборудования, охладители водорода и конденсата статоров электрогенераторов, охладители воздуха возбудителей, система охлаждения подшипников механизмов и т.п. Сырая вода для химической водоочистки электростанции обычно поступает из системы технического водоснабжения.

Системы водоснабжения бывают двух типов: прямоточная и оборотная. На ТЭЦ применяют в основном оборотную систему водоснабжения из-за недостаточного ресурса воды (ТЭЦ сооружают в основном в центре тепловых нагрузок). Оборотная система водоснабжения характеризуется многократным использованием технической воды. В качестве водоохладителя в оборотной системе водоснабжения используют водоём-охладитель либо градирни. Проектируемая ТЭЦ располагается рядом с крупным населенным пунктом и промышленными предприятиями, потребляющими тепловую и электрическую энергию. Поэтому принимается наиболее рациональная в данном случае оборотная система технического водоснабжения. В качестве водоохладителя в оборотной системе будут использованы градирни /3/.

Градирни являются типовыми водоохладителями, сооружаемыми на территории электростанции. Они состоят из оросительных устройств, вытяжных башен и приёмного бассейна и обеспечивают тепло- и массообмен подогретой воды с окружающим воздухом. Устройство градирни показано на рисунке 1. В бывшем СССР получили широкое распространение прямоточные градирни с естественной тягой. В оросительное устройство градирни под давлением циркуляционных насосов поступает подогретая в конденсаторах турбин охлаждающая вода. Современные градирни имеют систему водораспределения, где в качестве разбрызгивателей использованы преимущественно отражательные пластмассовые сопла с выходными отверстиями не менее 40 мм. Вода под давлением 15-18 кПа разбрызгивается над оросителем в виде дождя и стекает на его асбестоцементные листы. Водяная плёнка, стекающая по стенкам оросителя, охлаждается вследствие испарения и соприкосновения с воздухом, входящим в оросительные устройства через окна. Нагретый и насыщенный водяными парами воздух отводится вверх под действием естественной тяги через вытяжную башню. Охлаждённая вода стекает в водосборный бассейн, откуда забирается циркуляционными насосами для подачи снова в конденсаторы турбин /3/.

Вода в градирнях охлаждается в основном в результате испарения. Количество испаряемой влаги с учётом конвективного теплообмена составляет 1,5-2%. В результате испарения солесодержание циркуляционной воды возрастает; для поддержание концентрации солей в допустимых пределах осуществляют продувку циркуляционной системы или применяют химическую обработку добавочной воды.

Рисунок 2 – Устройство градирни

За счет большой поверхности контакта водной пленки с воздухом пленочные градирни имеют меньшую удельную площадь при равной охлаждающей способности.

Оросительное устройство собрано в отдельные блоки, состоящие из листов 1600х1200х6 мм и установленные на каркасе сборных же железобетона в два яруса по высоте (2х1200 мм). Расстояние между ярусами 25 мм /7/.

Определим площадь орошения:

FОР=Fy.NКОНД=0,03.3.300000=27000 м2

где удельная площадь орошения Fy=0,25-0,5 выбираем Fy=0,03м2/кВт

Принимаем три башенные градирни с площадью орошения 9400 м2 со стальным каркасом; асбестоцементной обивкой./17/.

Для предотвращения обрастания оросителей водорослями циркуляционную воду необходимо хлорировать.

Схема технического водоснабжения с градирнями предусматривает центральную насосную станцию. Охлажденная вода после градирни самотеком по железобетонным каналам поступает на всас циркуляционных насосов. Их установка обеспечивает работу насосов под заливом. Во избежание накипеобразования в трубной системе конденсаторов циркуляционную воду подкисляют. На насосной станции применяют центробежные насосы, создающие давление воды в 2,3 МПа.


7. Выбор и расчет водоподготовительной установки ТЭЦ

7.1 Исходные данные

Водоподготовительная установка проектируется для промышленно-отопительной ТЭЦ с котлами 3хТГМП-314. В качестве источника принята вода со следующими показателями. Показатели качества воды приведены в таблицах 1, 2.

Таблица 7. Показатели качества воды

Показатель Значение
Взвешенные вещества, мг/кг 14
Сухой остаток, мг/кг -
Минеральный остаток, мг/кг 228
Жесткость общая, мг-экв/л 4,29
Жесткость карбонатная, мг-экв/л 4,1
Жесткость некарбонатная, мг-экв/л 0,19

Таблица 8. Ионосодержание исходной воды

Са2+ HCO3- Mg2+ SO42- Na+ Al2O3+Fe2O3 Cl-
68.7 250.8 10.3 15 6.1 0.06 4.9

Пересчитаем показатели содержания ионов и окислов в мг-экв/кг и результаты расчета сведем в таблицу 3.

Таблица 9. Пересчет показателей качества исходной воды

Тип иона Содержание, мг/кг Эквивалент Содержание, мг-экв/кг
Ca2+ 68,7 20 3,435
Mg2+ 10,3 12,1 0,858
Na+ 6,1 23 0,53
250,8 61 4,1
15 48 0,3125
4,9 35,5 0,138
Al2O3+Fe2O3 0,06 - -

7.2 Описание схемы ВПУ, её эскизное изображение

Выбор конкретной схемы ВПУ производится в зависимости от качества исходной воды, типа котлоагрегатов, требований, предъявляемых к качеству воды.

На КЭС и отопительных ТЭЦ восполнение потерь питательной воды производится обессоленной водой, если среднегодовое суммарное содержание анионов сильных кислот исходной воды менее 5 мг-экв / кг

(å Аск = SO42- + Cl- = 1.282+3.289 =4.571 мг-экв / кг )

4.571< 5 мг-экв / кг

На электростанциях с прямоточными котлами применяют трёхступенчатое обессоливание /3/.

Водоподготовительные установки включают предочистку и ионитную часть. Предочистка состоит из осветлителей и осветлительных фильтров и служит для удаления из обрабатываемой воды грубодисперсных, коллоидных и частично молекулярнодисперсных веществ. Ионитная часть схемы служит для полного удаления молекулярнодисперсных веществ.

Т.к. Жк исходной воды Жк=4.1 > 2 мг-экв/ кг, то предочистка включает коагуляцию сернокислым железом FeSO4 +Ca(OH)2 c известкованием в осветлителе с последующим осветлением в осветлительных фильтрах /8/.

Жесткость остаточная: Карбонатная ЖКост=0,7мгэкв/кг; Некарбонатная ЖНКостНкисхFe=0,19+0,2=0,39 Где КFe=0,2мгэкв/кг–доза коагулянта Общая ЖОост=0,7+ЖНкостFe=0,7+0,19+0,2=1,09 мгэкв/кг

Щелочная остаточная: Щост=0,7+аизв=0,7+0,4=1,1мгэкв/кг Где аизв-избыток извести при известковании исходной воды. Принимаем аизв=0,4 мгэкв/кг.

Концентрация сульфат-ионов: SO42-ост+ КFe=0,3125+0,2=0,5125 мгэкв/кг

Концентрация Cl- не изменится

Концентрация SiO32-ост=0,6 SiO32-исх=0

Дальнейшая обработка воды проводится на ионитной части ВПУ. На проектируемой ТЭЦ планируется установка прямоточных котлов, таким образом обработку воды нужно проводить по схеме трехступенчатого обессоливания, которая включает в себя первую ступень Н-катионирования, слабоосновное анионирование, декарбонизацию, вторую ступень Н-катионирования, сильноосновное анионирование, и третья ступень - ФСД. (Н1-А1-Д-Н2-А2-ФСД), схема водоподготовительной установки ТЭЦ приведена на рисунке 1.