Zн1 =
= = 0,711Zн2 =
= = 1,21В1 = 1 / Zд1 = 1 / 0,711 =1,406 о. е.
В2 = 1 / Zд2 = 1 / 1,12 = 0,826 о. е.
Полученные значения больше 0.6, самозапуск произойдет успешно следовательно допустимо использование трансформатора ТРДНС – 63000 / 35.
6.ОПРЕДЕЛЕНИЕ МОЩНОСТИ ДИЗЕЛЬ-ГЕНЕРАТОРОВ СИСТЕМ НАДЁЖНОГО ПИТАНИЯ
6.1 Методика определения мощности дизель-генераторов систем надёжного питания
Мощность дизель-генератора при ступенчатом пуске асинхронной нагрузки выбирают по мощности, потребляемой(Рпотр i) электродвигателями, подключёнными к секции надёжного питания, и возрастающей с пуском очередной ступени. Должно выполняться условие:
где (20)nст - число ступеней пуска;
Рн дг – номинальная нагрузка ДГ.
Значение Рпотр определяется по номинальной мощности двигателя Рн дв, по его коэффициенту загрузки и КПД:
где (21)Ррас – расчётная мощность ЭД.
По этим формулам определяются мощности, потребляемые ЭД по завершении операции пуска соответствующей ступени. В то же время в процессе пуска очереди, в особенности при прохождении отдельными ЭД критического скольжения, величина нагрузки на ДГ может кратковременно увеличиться по сравнению с установившемся режимом. Для ДГ существуют заводские характеристики допустимых предельных нагрузок. Определение нагрузки в процессе пуска АД представляет сложную и трудоёмкую задачу. Пусковую мощность двигателя можно оценить на основе мощности, потребляемой в установившемся номинальном режиме, коэффициентов мощности номинального и пускового режимов, кратности пускового тока:
(22)
Тогда пусковая мощность на каждой из ступеней пуска определяется как сумма мощностей, потребляемых в установившемся режиме ранее запущенными двигателями, и пусковой мощности двигателей, запускаемых в данной ступени. Следует отметить, что пусковая мощность, определяемая по формуле (22), является величиной условной, так как в процессе пуска напряжение снижается.
6.2 Расчёт мощности ДГ систем надёжного питания
Расчёт мощности ДГ целесообразно вести в табличной форме. Расчёт приведён в таблице 6.1
Очередь пуска | Механизм | Рдв.н.(кВТ) | Рпотр.(кВТ) | соsφ пуск | Рпуск.(кВТ) | Установившая мощность | Пусковая мощность | Времявключ |
1 | Эквивалентный трансформатор надежного питания АБП | 1000 | 800 | 0,3 | 1500 | 800 | 1500 | 0 |
2 | Насос технической воды на ОРДЭС | 1250 | 1170 | 0,22 | 2080 | 1970 | 2880 | 10 |
3 | Насос подачи бора высокого давления | 55 | 45 | 0,89 | 126 | 2015 | 2096 | 5 |
4 | Насос аварийного впрыска бора | 800 | 625 | 0,89 | 1372 | 2640 | 3468 | 5 |
4 | Насос аварийного расхолаживания | 800 | 625 | 0,89 | 1372 | 3265 | 4012 | 5 |
4 | Аварийный питательный насос | 800 | 625 | 0,89 | 1372 | 3890 | 4637 | 5 |
5 | Насос технической воды ответственных потребителей | 630 | 498 | 0,88 | 1020 | 4388 | 4910 | 10 |
6 | Насос промконтура | 110 | 89 | 0,86 | 197 | 4477 | 4585 | 20 |
6 | Рециркуляц система охлаждения бокса | 110 | 89 | 0,86 | 197 | 4566 | 4674 | 20 |
6 | Рециркуляц система охлаждения центр зала | 110 | 89 | 0,86 | 197 | 4655 | 4763 | 20 |
7 | Рециркуляц система охлаждения шахты аппарата | 110 | 89 | 0,86 | 197 | 4744 | 4852 | 20 |
8 | Насос организованных протечек | 75 | 61 | 0,85 | 150 | 4805 | 4894 | 20 |
9 | Сплинкеный насос | 500 | 397 | 0,87 | 798 | 5202 | 5603 | 30 |
10 | Пожарный насос | 250 | 222 | 0,31 | 550 | 5424 | 5752 | 40 |
В качестве автономного источника выбираем дизель-генераторную станцию АСД – 5600, которая состоит из дизеля 78Г и синхронного генератора СБГД – 6300 – 6МУЗ
Номинальные данные генератора
- Активная мощность: Р=5600 кВт
- Напряжение: U=6300 В
- Ток статора: I=723 А
- Частота вращения n=1000 об/мин
Генератор обеспечивает пуск асинхронных двигателей, который сопровождается внезапным увеличением нагрузки до 150%
. Вместе с тем генератор в любом тепловом состоянии обеспечивает длительные нагрузки: 10% - 1ч., 25% - 15 мин., 50% - 2 мин.,7. РАСЧЕТ ТОКОВ КОРОТКОГО ЗАМЫКАНИЯ В ГЛАВНОЙ СХЕМЕ ЭЛЕКТРИЧЕСКИХ СТАНЦИЙ
7.1Общие положения
Расчёты токов КЗ производятся для выбора или проверки параметров электрооборудования, а так же для выбора или проверки уставок релейной защиты и автоматики.
Основная цель расчёта состоит в определении периодической составляющей тока КЗ для наиболее тяжелого режима работы сети.
Учёт апериодической составляющей производят приближенно, допуская при этом, что она имеет максимальное значение в рассматриваемой фазе.
Расчёт тока КЗ с учётом действительных характеристик и действительного режима работы всех элементов энергосистемы состоящей из многих электрических станций и подстанций, весьма сложен. Поэтому вводят ряд допущений, упрощающих расчёты и не вносящих существенных погрешностей:
- фазы ЭДС в
сех генераторов не изменяются в течение времени КЗ (отсутствует качание генераторов);
- не учитывается насыщение магнитных систем, что позволяет считать постоянными и не зависимыми от тока индуктивные сопротивления всех элементов КЗ цепи;
- пренебрегают намагничивающими токами трансформаторов;
- не учитывают ёмкостные проводимости элементов КЗ цепи на землю;
- считают, что трёхфазная система напряжений симметрична;
- влияние нагрузки на ток КЗ учитывают приближенно;
- при вычислении токов КЗ пренебрегают активным сопротивлением, если х/r > 3;
- обязательно учитывают R при определении постоянной времени затухания апериодической составляющей тока КЗ - Та.
Эти допущения существенно упрощают расчёты причём приводят к некоторому преувеличению токов КЗ (≤10%), что считается допустимым.
Расчёт токов при трёхфазном КЗ выполняется в следующем порядке:
-для рассматриваемой части энергосистемы составляется расчётная схема; по расчётной схеме составляется электрическая схема замещения. путём постепенного преобразования приводят схему замещения к наиболее простому виду так, чтобы каждый источник питания или группа источников, характеризующихся определённым значением результирующей ЭДС
,были связаны с точкой КЗ одним результирующим сопротивлением хрез.Используя методы расчёта электрических схем (узловых потенциалов, контурных токов, типовых кривых) определяют ток короткого замыкания в заданном месте схемы.
Рис 7.1 Расчетные зоны по токам КЗ для блочной электростанции
Рис. 7.2 Схема замещения блочной электростанции
Расчет
1. Исходные данные (параметры элементов схемы):
Энергосистема: ВН – SК1=17000МВА, UВН=750кВ;
СН – SК2=13000МВА, UСН=330кВ;
ЛЭП – ВН – W1…W4, ℓвн = 210км, Худ вн=0,28 Ом/км.
- СН – W5…W9, ℓсн = 60км, Худ сн=0,4 Ом/км.
Блочные трансформаторы:
ВН – Т1,Т2,Т3,Т4®ОРЦ-417000/750, UК1=14%;
СН – Т5,Т6,Т7, Т8,Т9®ТНЦ-1250000/330, UК2=14,5%;
Автотрансформатор связи:
АОДЦТН 330000/750/330, UК4=11,5%.
Генераторы:
G1…G9 ® ТВВ-1000-2У3; SН1=1111МВА; cosj=0,9;
PН1=1000МВт, Uн=24кВ,
=0,382, =0,269.Трансформаторы собственных нужд:
ТРДНС-63000/35; иК5=12,7%.
2. Определение параметров схемы замещения в о.е. для зоны I (КЗ на шинах 750кВ или 330)
Выбираем в качестве базисных Uб=750кВ и Sб=1000МВА.
Базисный ток:
Сопротивления генераторов в о.е.:
Сопротивление блочных трансформаторов:
- на стороне ВН
- на стороне СН