Смекни!
smekni.com

Проектирование электромеханических устройств (стр. 10 из 21)

в) аппараты распределения энергии выше 1000 В:

мВ

Предельные падения напряжения при окисленных контактах допускаются до 300мВ.

В любом случае, падение напряжения на контактах должно быть меньше напряжения рекристаллизации. Кроме напряжения рекристаллизации, используется температура рекристаллизации. По установленной величине падения напряжения на коммутирующих контактах определяется превышение температуры в контактных площадках, полученное значение сопоставляется с ранее принятым при расчёте

:

12.11 Определение допустимого тока через коммутирующие контакты

Допустимый ток фактически характеризует возможности контактного узла на заданный режим работы с учётом принятого материала контактов, конструктивной формы контактной поверхности, принятого значения

и др.

Величина допустимого тока рассчитывается по формуле:

Полученное значение допустимого тока необходимо сопоставить с предельным током для контактного узла в соответствии с категорией применения аппаратов (ДС1, ДС2, АС1, АС2, АС3), а также с учётом режима коммутации (нормальный, редкий). В любом случае, должно выполняться условие:

Если это условие не выполняется или допустимый ток существенно больше предельного, то контактный узел спроектирован нерационально. Для определения рациональных параметров контактного узла необходимо все расчёты повторить, начиная с пересмотра выбора материала.

12.12 Определение величины тока сваривания контактов

12.12.1 Общий метод определения тока сваривания

Предполагают, что при протекании тока постоянной величины происходит нарастание температуры контактной площадки, близкой к температуре плавления по экспоненте, при этом предельный ток сваривания определяется по формуле:

где:

- общие результирующие силы контактного нажатия

t1 – это предполагаемое время протекания предельного тока

Т – постоянная времени нагрева контактной площадки

, где

– удельная теплоёмкость, теплопроводность и плотность материала контактов

– температура нагрева контактной площадки в момент времени t1

Fэду – [1, стр. 49]

12.12.2 Расчёт начального тока сваривания контактов

– коэффициент, характеризующий увеличение контактной площадки в процессе нагревания, который зависит от силы
и от времени импульса тока.

находится в пределах от 2 до 4 , (см.[1]).

– характерный коэффициент, определяется по формуле:

– соответственно твёрдость материала по Бринеллю и удельное сопротивление при 0оС. НВо из таблицы значений выбираем большее значение.

– температура плавления контакта материала

Этот способ даёт значительные погрешности, применяется при небольших силах нажатия.

12.12.3 Определение тока сваривания по экспериментальным данным

Эта экспериментальная формула даёт хорошее совпадение расчётных и экспериментальных данных по

, для маломощных одноточечных серебряных и медных контактов.

– это напряжение, соответствующее плавлению контакта материала

12.12.4 Определение тока сваривания по опытным данным

В соответствии с рекомендациями Буткевича:

где

– определяется по [1, табл. 5.9 и рис. 5.12], который получен на опытных данных.

Полученные значения тока сваривания сопоставляются между собой и для дальнейших расчётов принимают меньшее значение. Принятое это значение тока сваривания сопоставляется с возможным током к.з. при работе аппарата или с предельным током для соответствующей категории применения аппаратов, при этом должно выполняться условие:

;
.

12.13 Мероприятия по повышению устойчивости контактов против сваривания

12.13.1 Конструктивные мероприятия

а) повышение силы конечного контактного нажатия.

б) уменьшение вибрации контактов при включении и выключении.

в) ускорение процесса возрастания силы нажатия после замыкания контактов.

г) компенсация отбрасывающего давления электродинамических сил:

– предельный ток для заданной категории применения аппарата или ток к.з.

S1 – поперечное сечение контактной детали

S – сечение площади смятия:

Эта сила Fэду возникает в контактных площадках при замкнутых контактах, за счёт стягивания линий тока в контактных площадках.

д) изменение формы контактной поверхности.

Точечный контакт сваривается при меньших токах, чем линейный, а линейный контакт – при меньших токах, чем плоскостной.

е) разделение контактов на ряд параллельных.

Парные контакты свариваются при токах ≈ в два раза больше чем одинарных.

При этом распределение тока в контактах следует определять по формуле:

, А

где

– коэффициент неравномерности
;

– число параллельных ветвей

12.13.2 Повышение устойчивости за счёт рационального выбора материала

а) применение разнородных материалов для контактов;

б) использование металлокерамических контактов, содержащих графит;

в) использование мелкодисперсных металлокерамических контактов.

12.14 Износостойкость контактов

12.14.1 Общие положения

Износ контактов зависит от многих факторов и происходит при замыкании и размыкании.

Износостойкость зависит:

а) условия работы:

· род тока (постоянный, переменный)

· напряжение источника питания

· величина тока

· характер нагрузки (активная, слабо инд., сильно инд.)

· частота включений в час

· среда (воздух, масло, спец. газовая среда и др.)

б) конструкции аппарата:

· время коммутации

· вибрация контакта

· конструктивная форма контакта

· напряжённость магнитного поля в межконтактном промежутке (увеличение напряжения больше оптимального приводит к выбрасыванию мостика расплавленного металла ЭДУ и повышению износа)

· скорость движения контактов (скорость движения при включении и скорость движения при отключении)

Мерой износа контактов является уменьшение провала контактов (линейный износ), а также объём и масса удаляемого с контактной поверхности металла.

12.14.2 Расчётные зависимости для определения электрической износостойкости

Электрическая износостойкость или гарантируемое число коммутаций в общем случае определяется по формуле:

, или
,

где

– объём изнашиваемого металла двух контактов, см3

– удельный объёмный износ при одном размыкании и одном замыкании

– плотность материала

– удельный массовый износ при одном замыкании и одном размыкании